www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - kurvendiskussion... prüfen
kurvendiskussion... prüfen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurvendiskussion... prüfen: Frage
Status: (Frage) beantwortet Status 
Datum: 19:58 So 10.04.2005
Autor: sarah1977

hallo leute... morgen steht mir eine analysis klausur bevor und ich bitte euch diese kurvendiskussion zu prüfen...

1. f(x)=  [mm] e^{-x^2-x} [/mm]

2. Ableitungen:
f'(x)= [mm] (-2x-1)e^{-x^2-x} [/mm]

f''(x)= [mm] (4x^2+4x-1)e^{-x^2-x} [/mm]

f'''(x)= [mm] (-8x^3-12x^2+6x+5)e^{-x^2-x} [/mm]

Symetrie: keine symetrie

Nullstellen:
f(x)=0
[mm] e^{-x^2-x} [/mm] kann nie null werden.

Extrema:
Notwendige Bedingung
f'(x)=0
[mm] e^{-x^2-x} [/mm] kann nie null werden, daher (-2x-1)=0
-2x-1=0 -> x= -0,5
Hinreichende Bedingung:
[mm] f''(x)\not=0 [/mm]
[mm] e^{-x^2-x} [/mm] kann nie null werden. prüfen ob [mm] (4x^2+4x-1) \not= [/mm] oder 0 o ist.
[mm] f''(x)=(4x^2+4x-1)\not=0 [/mm]
f''(-0,5)= [mm] -2\not=0 [/mm] (richtig)
es besteht ein Maximum.

f(x)= [mm] e^{-x^2-x} [/mm]
f(-0,5)= [mm] e^0,25 [/mm] = 1,28
Bei (-0,5/1,28) besteht ein Maximum.

Wendepunkte:
Notwendige Bedinung:
f''(x)=0

f''(x)= [mm] (4x^2+4x-1)e^{-x^2-x} [/mm]
[mm] e^{-x^2-x} [/mm] kann nie null werden. [mm] (4x^2+4x-1)=0 [/mm]
(gerechnet mit pq-formel)
ergebniss:
x1: 0,21
x2:-1,21

Hinreichende Bedingung:
f'''(x) [mm] \not=0 [/mm]
f'''(x)= [mm] (-8x^3-12x^2+6x+5)e^{-x^2-x} [/mm]
f'''(0,21)= 5,66
f'''(-1,21)= -5,66

[mm] f(x)=e^{-x^2-x} [/mm]
f(0,21)= e^(-0,254)= 0,776
f(-1,21)= e^(-0,254)= 0,776

Wendepunkte bei (0,21/0,776) sowie (-1,21/0,776) <- ich vermute das hier ist falsch... sind das sattelpunkte?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

schnmal ganz grosses dankeschön

        
Bezug
kurvendiskussion... prüfen: Korrektur (kaum nötig!)
Status: (Antwort) fertig Status 
Datum: 20:27 So 10.04.2005
Autor: Loddar

Hallo Sarah!

Auch Dir hier [willkommenmr] !

> hallo leute... morgen steht mir eine analysis klausur bevor
> und ich bitte euch diese kurvendiskussion zu prüfen...

Na, da drücken wir doch auf jeden Fall die Daumen!
Schreib' mal wie's gelaufen ist ...


  

> 1. f(x)=  [mm]e^{-x^2-x}[/mm]
>  
> 2. Ableitungen:
> f'(x)= [mm](-2x-1)e^{-x^2-x}[/mm]
>  
> f''(x)= [mm](4x^2+4x-1)e^{-x^2-x}[/mm]
>  
> f'''(x)= [mm](-8x^3-12x^2+6x+5)e^{-x^2-x}[/mm]

[daumenhoch] Prima!



> Symetrie: keine symmetrie an y-Achse oder zum Ursprung

[daumenhoch] Die Kurve ist nämlich achsen-symmetrisch zur Gerade $x \ = \ -0,5$

Dies' könnte man nachweisen mit der Formel

$f(a+x) \ = \ f(a-x)$  mit  $a \ = \ -0,5$



> Nullstellen:
> f(x)=0
> [mm]e^{-x^2-x}[/mm] kann nie null werden.

[daumenhoch]



> Extrema:
> Notwendige Bedingung
> f'(x)=0
> [mm]e^{-x^2-x}[/mm] kann nie null werden, daher (-2x-1)=0
> -2x-1=0 -> x= -0,5

[daumenhoch]


> Hinreichende Bedingung:
> [mm]f''(x)\not=0[/mm]
> [mm]e^{-x^2-x}[/mm] kann nie null werden. prüfen ob [mm](4x^2+4x-1) \not=[/mm]
> oder 0 o ist.
> [mm]f''(x)=(4x^2+4x-1)\not=0[/mm]
> f''(-0,5)= [mm]-2\not=0[/mm] (richtig)
> es besteht ein Maximum.

[daumenhoch]


> f(x)= [mm]e^{-x^2-x}[/mm]
>  f(-0,5)= [mm]e^{0,25}[/mm] = 1,28 [mm] $\red{= \ \wurzel[4]{e}}$ [/mm]
>  Bei (-0,5/1,28) besteht ein Maximum.

[daumenhoch]



> Wendepunkte:
> Notwendige Bedingung:
> f''(x)=0
>  
> f''(x)= [mm](4x^2+4x-1)e^{-x^2-x}[/mm]
> [mm]e^{-x^2-x}[/mm] kann nie null werden. [mm](4x^2+4x-1)=0[/mm]
> (gerechnet mit pq-formel)
> ergebniss:
> x1: 0,21
> x2:-1,21

[daumenhoch] Zunächst die genauen Ergebnisse hinschreiben:

[mm] $x_1 [/mm] \ = \ [mm] \bruch{-1 + \wurzel{2}}{2} [/mm] \ [mm] \approx [/mm] \ 0,21$
[mm] $x_2 [/mm] \ = \ [mm] \bruch{-1 - \wurzel{2}}{2} [/mm] \ [mm] \approx [/mm] \ -1,21$



> Hinreichende Bedingung:
> f'''(x) [mm]\not=0[/mm]
> f'''(x)= [mm](-8x^3-12x^2+6x+5)e^{-x^2-x}[/mm]
> f'''(0,21)= 5,66
> f'''(-1,21)= -5,66
>  
> [mm]f(x)=e^{-x^2-x}[/mm]
> f(0,21)= e^(-0,254)= 0,776
> f(-1,21)= e^(-0,254)= 0,776
>  
> Wendepunkte bei (0,21/0,776) sowie (-1,21/0,776)

[daumenhoch]


[Dateianhang nicht öffentlich]




[applaus] Toll gemacht!!! Da muß Dir vor morgen nicht bange sein ...

Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
kurvendiskussion... prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 So 10.04.2005
Autor: sarah1977

vielen dank.... ich werde auf alle fälle berichten wie es gelaufen ist.

ach ja und auch noch danke für das nette begrüssen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de