www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - kurvendiskussion
kurvendiskussion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurvendiskussion: "Frage"
Status: (Frage) beantwortet Status 
Datum: 20:20 Di 04.03.2008
Autor: Dagobert

hallo!

hätte ne frage zu folgendem beispiel:

[Dateianhang nicht öffentlich]

1.definitionsbereich

[mm] D={x\in\IR/x\not=5} [/mm]

2.nullstellen

f(x)=0

[mm] 0=e^x/(x-5) [/mm] --> x=5 (nullstelle)

3.extremwerte

f'(x)=0

[mm] f'(x)=(e^x/(x-5))-(e^x/(x-5)^2)=0 [/mm]

--> x=6

das hab ich dann in der zweiten ableitung eingesetzt:

[mm] f''(x)=(e^x/(x-5))-2*e^x/(x-5)^2)+(2*e^x/(x-5)^3) [/mm]

--> >0 --> minimalstelle

4.wendepunkte

ist da die zweite ableitung null oder? nur wie löse ich das dann? ist ja immer wenn x=5 ist 0 0der?

5.randbereich

[mm] \limes_{x\rightarrow\infty}e^x/(x-5) [/mm] --> [mm] \infty [/mm] oder?

nur welche bereiche muss ich da noch betrachten?

danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
kurvendiskussion: Kurvendiskussion
Status: (Antwort) fertig Status 
Datum: 20:55 Di 04.03.2008
Autor: clwoe

Hi,

der Definitionsbereich stimmt und auch die Ableitung und die Extremstelle stimmt. Auch die Minimalstelle stimmt. Die Nullstelle ist falsch. Der Zähler kann nicht 0 werden und der Nenner darf nicht 0 werden. Also gibt es keine Nullstelle.

Für die Wendepunkte gilt: zweite Ableitung muss 0 werden.
Die zweite Ableitung sieht so aus: [mm] f^{''}(x)=\bruch{e^{x}(x^{2}-12x+37)}{(x-5)^{3}} [/mm]

Hier gilt doch: Der Nenner kann nicht 0 werden, [mm] e^{x} [/mm] wird nicht 0, also muss der quadratische Term 0 werden. Das kannst du prüfen mit der Lösungsformel.

Für die Grenzwerte musst du anschauen wie dein Definitionsbereich lautet. Hier ist er [mm] \IR \setminus [/mm] {5}. Also einmal x-> [mm] +\infty, [/mm] x-> [mm] -\infty, [/mm] x -> 5 einmal von rechts kommend und x -> 5 einmal von links kommend. Hier prüfst du praktisch wie sich der Graph in der Nähe der Asymptote verhält, denn 5 ist ja ausgeschlossen.

Ich hoffe es ist dir jetzt klarer.

Gruß,
clwoe


Bezug
                
Bezug
kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Di 04.03.2008
Autor: Dagobert

hallo!

-wendepunkte:

wie kann ich [mm] x^2-12x+37 [/mm] lösen? da steht mit der lösungsformel ja dann -1 unter der wurzel?

-randbereich:

wenn ich sage:

[mm] \limes_{x\rightarrow\infty}e^x/(x-5) [/mm] --> [mm] \infty [/mm] .. [mm] +\infty [/mm] und [mm] -\infty [/mm] verhalten sich da ja gleich oder?

und

[mm] \limes_{x\rightarrow5+}e^x/(x-5) [/mm] --> [mm] +\infty [/mm]

[mm] \limes_{x\rightarrow5-}e^x/(x-5) [/mm] --> [mm] -\infty [/mm]

oder?

danke!




Bezug
                        
Bezug
kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Di 04.03.2008
Autor: zetamy

Hallo,

> -wendepunkte:
>  
> wie kann ich [mm]x^2-12x+37[/mm] lösen? da steht mit der
> lösungsformel ja dann -1 unter der wurzel?

Richtig. Folglich gibt es keinen reellen Wendepunkt.

>  
> -randbereich:
>  
> wenn ich sage:
>  
> [mm]\limes_{x\rightarrow\infty}e^x/(x-5)[/mm] --> [mm]\infty[/mm] .. [mm]+\infty[/mm]
> und [mm]-\infty[/mm] verhalten sich da ja gleich oder?

Für [mm]x\to\infty[/mm] ist das richtig, aber nicht für [mm]x\to -\infty[/mm]. Sieh dir die Exponentialfunktion für große negative nochmal an.

>  
> und
>  
> [mm]\limes_{x\rightarrow5+}e^x/(x-5)[/mm] --> [mm]+\infty[/mm]
>  
> [mm]\limes_{x\rightarrow5-}e^x/(x-5)[/mm] --> [mm]-\infty[/mm]

Diese Grenzwerte sind richtig.


Gruß, zetamy

Bezug
                                
Bezug
kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Do 06.03.2008
Autor: Dagobert

hallo!

Für [mm] x\to\infty [/mm]  ist das richtig, aber nicht für [mm] x\to -\infty [/mm]  . Sieh dir die Exponentialfunktion für große negative nochmal an.

geht dann für [mm] -\infty [/mm] der grenzwert gegen 0 oder?

danke!


Bezug
                                        
Bezug
kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Do 06.03.2008
Autor: MathePower

Hallo Dagobert,

> hallo!
>  
> Für [mm]x\to\infty[/mm]  ist das richtig, aber nicht für [mm]x\to -\infty[/mm]
> . Sieh dir die Exponentialfunktion für große negative
> nochmal an.
>  
> geht dann für [mm]-\infty[/mm] der grenzwert gegen 0 oder?

Ja. [ok]

>
> danke!
>  

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de