www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - l'hospital?
l'hospital? < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

l'hospital?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Di 10.04.2007
Autor: snappy

ich soll das verhalten bei +/- unendlich untersuchen
die fkt.lautet [mm] \bruch{x}{e^{x}} [/mm] laut lösung kann ich - [mm] \infty [/mm]
ohne L'hospital lösen aber + [mm] \infty [/mm] nicht. kann mir jemand erklären warum dass so ist?hab mir schon einige seiten zu l'hospital durchgelesen aber ich verstehe nicht wann ich das mache und wann nicht?
mfg snappy

        
Bezug
l'hospital?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Di 10.04.2007
Autor: Fry

Hallo,

das hängt wohl damit zusammen, dass
[mm] \limes_{n\rightarrow - \infty} \bruch{x}{e^x} [/mm] = [mm] "\bruch{-\infty}{0}" [/mm] ist, hier kannst du L´Hospital nicht anwenden, da der Grenzwert von Zähler und Nenner gleich sein muss, wie bei [mm] \limes_{n\rightarrow \infty} \bruch{x}{e^x} [/mm] = [mm] "\bruch{\infty}{\infty}" [/mm]

Grüsse
Fry

Bezug
                
Bezug
l'hospital?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Di 10.04.2007
Autor: snappy

aber ist [mm] -\infty [/mm] durch 0 = 0? oder hab ich grad ein brett vorm kopf??

Bezug
                        
Bezug
l'hospital?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Di 10.04.2007
Autor: Stefan-auchLotti


> aber ist [mm]-\infty[/mm] durch 0 = 0? oder hab ich grad ein brett
> vorm kopf??

Hi,

das mit dem Brett bezweilfle ich, ;-) vermutlich einfach zu schnell Behauptungen aufgestellt.

Der Zähler $x$ geht für [mm] $x\to-\infty$ [/mm] eindeutig gegen [mm] $-\infty$, [/mm] was ja schon die "Bewegung" selbst aussagt.

[mm] $e^x$ [/mm] geht nachwievor gegen 0.



Grüße, Stefan.

Bezug
                        
Bezug
l'hospital?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Di 10.04.2007
Autor: Fry

Hallo,

also generell gilt: durch 0 teilen ist verboten !
Außerdem muss man bei solchen Grenzwertprozeßen sehr vorsichtig sein.
Denn es gilt z.B. NICHT immer:  [mm] \infty [/mm] * [mm] \infty [/mm] = [mm] \infty [/mm]  oder 0 * [mm] \infty [/mm] = 0.
Das hängt von der Funktion ab. In solchen Fällen helfen nur andere Betrachtungen.

z.B. könntest du folgendes machen:
Du könntest z.B. das x durch -x ersetzen und dafür den Grenzwert für [mm] +\infty [/mm] statt für - [mm] \infty [/mm] betrachten.

Also: [mm] \limes_{x\rightarrow- \infty} \bruch{x}{e^x} [/mm] = [mm] \limes_{x\rightarrow \infty} \bruch{-x}{e^-x} [/mm] = [mm] \limes_{x\rightarrow \infty} (-x)*e^x [/mm]

Jetzt könnte man das Steigungsverhalten des Graphen und die Nullstellen betrachten von f(x) = [mm] (-x)*e^x. [/mm]

f´(x) = [mm] (1+x)*(-e^x) [/mm]
Für positve x ist 1+x [mm] \le [/mm] 0 und -e^-x [mm] \ge [/mm] 0, also ist für x [mm] \le [/mm] 0 immer negativ.
D.h. der Graph fällt streng monoton.
Das wiederum bedeutet: entweder streben die Funktionswerte gegen [mm] -\infty [/mm] oder gegen 0.

Jetzt kommen die Nullstellen ins Spiel: f(x) hat eine Nullstelle bei x=0.
Da der Graph der Funktion aber fällt, kann er sich nicht der null nähern, dafür müsste er steigen, da die Funktionswere beim Überschreiten der Nullstelle negativ werden. Also kann der Grenzwert nur - [mm] \infty [/mm] sein.

Grüße
Fry


Bezug
        
Bezug
l'hospital?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Di 10.04.2007
Autor: HJKweseleit


> ich soll das verhalten bei +/- unendlich untersuchen
>  die fkt.lautet [mm]\bruch{x}{e^{x}}[/mm] laut lösung kann ich -
> [mm]\infty[/mm]
> ohne L'hospital lösen aber + [mm]\infty[/mm] nicht. kann mir jemand
> erklären warum dass so ist?

Du darfst in beiden Fällen L'Hospital anwenden, aber bei
- [mm]\infty[/mm] ist dies nicht nötig:
Der Zähler wird zu einer immer "größeren" negativen Zahl, geht nach - [mm]\infty[/mm]. Der Nenner ist immer positiv, wird aber immer kleiner. Das verstärkt die "Größe" des Wertes noch: Also geht das Ganze gegen - [mm]\infty[/mm].

Für + [mm]\infty[/mm] ist dies nicht direkt einsichtig: Zähler und Nenner gehen beide nach + [mm]\infty[/mm]. Ist der Quotient nun 1, 0 oder 4711? Nun wendest du L'Hospital an (nicht zu verwechseln mit der Quotientenregel!) und erhältst [mm] 1/e^{x}. [/mm] Nun geht für x nach + [mm]\infty[/mm] der Zähler gegen Null. Außerdem wird er durch eine immer größere Zahl geteilt. Also wird das Ganze erst recht 0.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de