www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - lagebeziehungen von geraden
lagebeziehungen von geraden < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lagebeziehungen von geraden: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:26 Di 08.03.2005
Autor: teksen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gegeben sind die Geraden

g: x = [mm] \vektor{2 \\ 7 \\ -6 \\} [/mm] + r * [mm] \vektor{2 \\ 3 \\ 0 \\} [/mm] und h: x = [mm] \vektor{2 \\ -3 \\ 7 \\} [/mm] + s * [mm] \vektor{2 \\ 0 \\ -1 \\}. [/mm]

Untersuchen Sie die Lagebeziehung von g und h und berechnen Sie gegebenenfalls den Schnittpunkt oder Abstand.

Also ich weiss da nich mehr alles. wenn die Richtungsvektoren kollinear sind sind die Geraden ja parallel oder identisch - allerdings weiss ich auch nich mehr wie man feststellt ob sie parallel oder identisch sind -.-

Sind die Richtungsvektoren nicht kollinear schneiden die Geraden sich oder sind windschief - ist ja hier auf jeden Fall so. Weiss aber auch leidernich mehr was man dann macht - Hoffe mir kann da jemand helfen.

        
Bezug
lagebeziehungen von geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Di 08.03.2005
Autor: Stefan

Hallo teksen!

> Gegeben sind die Geraden
>  
> g: x = [mm]\vektor{2 \\ 7 \\ -6 \\}[/mm] + r * [mm]\vektor{2 \\ 3 \\ 0 \\}[/mm]
> und h: x = [mm]\vektor{2 \\ -3 \\ 7 \\}[/mm] + s * [mm]\vektor{2 \\ 0 \\ -1 \\}. [/mm]
>  
>
> Untersuchen Sie die Lagebeziehung von g und h und berechnen
> Sie gegebenenfalls den Schnittpunkt oder Abstand.
>  
> Also ich weiss da nich mehr alles. wenn die
> Richtungsvektoren kollinear sind sind die Geraden ja
> parallel oder identisch -

[ok]

>  allerdings weiss ich auch nich
> mehr wie man feststellt ob sie parallel oder identisch sind

Schau doch einfach, ob der Stützvektor der einen Gerade die andere Geradengleichung erfüllt. Äquivalent dazu ist, dass die Differenz der beiden Stützvektoren ein Vielfaches eines (und damit beider) Richtungsvektoren ist.


> Sind die Richtungsvektoren nicht kollinear schneiden die
> Geraden sich oder sind windschief - ist ja hier auf jeden
> Fall so.

[ok]

Weiss aber auch leidernich mehr was man dann macht

> - Hoffe mir kann da jemand helfen.

>
Schau doch einmal mal durch Gleichsetzen, ob die beiden Geraden einen Schnittpunkt besitzen. Äquivalent dazu ist, dass die Differenz der beiden Stützvektoren eine Linearkombination der beiden Richtungsvektoren sind.

Ist dies nicht der Fall (d.h. habe die beiden Geraden keinen Schnittpunkt), so sind sie windschief.

Wenn du wissen willst, wie man dann Abstände der beiden windschiefen Geraden (oder aber zweier paralleler Geraden) berechnet, kannst du das sehr schön []hier nachlesen.

Liebe Grüße
Stefan

Bezug
        
Bezug
lagebeziehungen von geraden: weitere Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Mi 09.03.2005
Autor: Zwerglein

Hi, teksen,

> Gegeben sind die Geraden
>  
> g: x = [mm]\vektor{2 \\ 7 \\ -6 \\}[/mm] + r * [mm]\vektor{2 \\ 3 \\ 0 \\}[/mm]
> und h: x = [mm]\vektor{2 \\ -3 \\ 7 \\}[/mm] + s * [mm]\vektor{2 \\ 0 \\ -1 \\}. [/mm]
>  
>
> Untersuchen Sie die Lagebeziehung von g und h und berechnen
> Sie gegebenenfalls den Schnittpunkt oder Abstand.
>  
> Also ich weiss da nich mehr alles. wenn die
> Richtungsvektoren kollinear sind sind die Geraden ja
> parallel oder identisch - allerdings weiss ich auch nich
> mehr wie man feststellt ob sie parallel oder identisch sind

Also zunächst mal ist "identisch" nur ein Sonderfall von "parallel".
Sind Geraden parallel, aber nicht identisch, nennt man das "echt parallel".

Hast Du also festgestellt, dass die Geraden parallel sind und möchtest nun wissen, ob sie sogar identisch sind, kannst Du so vergehen, wie Stefan Dir das vorgeschlagen hat, oder Du bildest den Vektor zwischen den beiden Aufpunkten der Geraden und schaust, ob dieser mit einem Richtungsvektor kollinear ist. Wenn ja: identisch. Wenn nein: echt parallel.

>  
> Sind die Richtungsvektoren nicht kollinear schneiden die
> Geraden sich oder sind windschief - ist ja hier auf jeden
> Fall so. Weiss aber auch leidernich mehr was man dann macht
> - Hoffe mir kann da jemand helfen.
>  

Nun: Jetzt wär's gut, wenn Du die DETERMINANTE kennen würdest. Dann wäre Deine Vorgehensweise folgende:
Die Determinante aus den beiden Richtungsvektoren und dem Verbindungsvektor der Aufpunkte ausrechnen. Wenn =0 rauskommt: Schnittpunkt; wenn nicht 0 rauskommt: windschief!

In Deinem Beispiel: (Parallel sind die Geraden ja offensichtlich nicht!)
[mm] \vmat{2 & 2 & 0 \\ 3 & 0 & -10 \\ 0 & -1 & 13} [/mm] = -98 [mm] \not= [/mm] 0
Daher sind Deine beiden Geraden windschief!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de