www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - langsamster Kreisel
langsamster Kreisel < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

langsamster Kreisel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 So 20.01.2019
Autor: nosche

Aufgabe
wann kippt ein Kreisel nicht mehr?

[Dateianhang nicht öffentlich]
Dreht sich ein Kreisel  der Masse m, dem Trägheitsmoment [mm] \Theta [/mm] und der Winkelgeschwindigkeit [mm] \omega [/mm] im Schwerefeld der Erde führt das zu einer Päzessionsbewegung mit der Winkelgschwindigkeit [mm] \omega_{p} [/mm]
Bei [mm] \omega [/mm] = [mm] 0s^{-1} [/mm] kippt der Kreisel um.
Läßt sich näherungsweise ein minimales [mm] \omega [/mm] angeben, ab dem der Kreisel nicht mehr umkippt?
Ich finde kein passendes Drehmoment, das das Umkippen des Kreisels verhindert



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
langsamster Kreisel: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 So 20.01.2019
Autor: HJKweseleit

Theoretisch muss ein Kreisel überhaupt nicht umkippen. Wenn du z.B. ein hart gekochtes Ei flach liegend schnell drehst, richtet es sich sogar auf und dreht sich auf der Spitze weiter.

Der aufrechte Kreisel hat einen bestimmten Drehimpuls. Wenn er zum Schluss bewegungslos da liegt, muss die Erde diesen übernommen haben (Drehimpulserhaltung). Wie macht sie das?

Das geht natürlich nur über die Reibung; wäre sie nicht da, würde der Kreisel ewig kreiseln. Erklären kann man den Vorgang schön mit Corioliskräften:

Würdest du den rotierenden Kreisel oben an der Achse an einem Kugellager leicht gekippt festhalten und dann loslassen, so würde er tatsächlich etwas umkippen. Diese Bewegung sorgt aber über Corioliskräfte für die Präzessionsbewegung, und diese ihrerseits über Corioliskräfte, dass ein aufrichtendes Moment entsteht. So lange letzteres nicht stark genug ist, kippt der Kreisel weiter, beschleunigt die Präzession, bis diese das Kippen kompensiert.

Wenn nun auf Grund der Reibung die Rotationsgeschwindigkeit abnimmt, sinkt die Corioliskraft. Der Kreisel kippt wieder ein Stück, die dabei entstehenden Corioliskräfte beschleunigen die Präzessionsbewegung wieder, und die für die Carioliskraft fehlende Rotationsgeschwindigkeit wird durch die Präzessionsgeschwindigkeit ausgeglichen bzw. verstärkt, da der weiter geneigte Kreisel eine stärkere Corioliskraft als zuvor benötigt, um nicht umzukippen. Je langsamer der Kreisel rotiert, desto schneller präzediert er, bis er dann aufsetzt und durch die Bodenberührung ganz abgebremst wird.

Für den Kreisel muss das Produkt [mm] \omega [/mm] * [mm] \omega_p [/mm] konstant sein.

Bezug
                
Bezug
langsamster Kreisel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Mo 21.01.2019
Autor: nosche

vielen Dank für die recht ausführliche Rückmeldung.
Ich kenne den Kreisel über den Drehimpuls [mm] \vec{L} [/mm] und das Drehmoment [mm] \vec{M}=\vec{r}\times m\vec{g}=\bruch{d \vec{L}}{dt}, [/mm] wie im Giancoli abgehandelt. Der Ansatz mit Corioliskräften ist mir neu, muß ich mal nachforschen, vielleicht gibts da eine Kraft, ein Moment wonach ich suche.
Es bleibt erst mal die Frage: wann "siegt" die Präzession über das Umkippen [mm] \omega >10s^{-1}, \omega >100s^{-1}, \omega >1000s^{-1},... [/mm] bei einem [mm] Kreisel(m,\Theta)? [/mm]

Bezug
                        
Bezug
langsamster Kreisel: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Di 22.01.2019
Autor: leduart

Hallo
der Kreisel hat ja eine Ausdehnung, dass er umso stärker kippt, je kleiner sein [mm] \omega [/mm] ist, ist klar. Irgendwann berührt dann der kreisend äußere Rand die Unterlage und das kreiseln hört auf. Eigentlich geht es deshalb um die äußere Form des Kreisels, und den dazugehörigen Winkel. Ich hoffe, ich hab deine Frage so richtig interpretiert.
Gruß leduart

Bezug
                                
Bezug
langsamster Kreisel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 Sa 26.01.2019
Autor: nosche

an die Geometrie des Kreisels hab ich noch gar nicht gedacht, ist aber einleuchtend, dass es deshalb einen größten Öffnungswinkel für den den Präzessionskegel gib. Die Drehimpulsänderung müßte verhindern, dass dieser Winkel erreicht wird.



Bezug
                        
Bezug
langsamster Kreisel: Corioliskraft Beispiel
Status: (Antwort) fertig Status 
Datum: 23:25 Mi 23.01.2019
Autor: HJKweseleit

Im Anhang findest du ein allgemeines Rechenbeispiel für die Corioliskraft.

[a]1

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de