legendre ,lsg verstehen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:28 So 13.08.2017 | Autor: | nkln |
Aufgabe | Zeigen Sie, dass eine Primzahl $p$ genau dann in der Form $p=x2 [mm] +3y^2$ [/mm] mit $x,y [mm] \in \IZ$ [/mm] darstellbar ist,wenn $p=3$ oder $p [mm] \equiv [/mm] 1 (mod 3)$.
Hinweis:Betrachten Sie für $p [mm] \equiv [/mm] 1 (mod 3)$ das Legendre-Symbol [mm] $(\frac{-3}{p})$ [/mm] |
Hallo, ich hab die musterlösung zu dieser aufgabe aus der Übung,jedoch verstehe ich sie nicht so ganz
Die Lsg.:
Für $p=3$ gilt [mm] $3=0^2+3*1^2$ [/mm] wieso reicht das schon für p=3?
wäre $p [mm] \equiv [/mm] 1 (mod 3)$ in der Form [mm] $x^2+3y^2$ [/mm] darstellbar,so folgt mit dem Legnrende-Symbol $-1 = [mm] (\frac{p}{3})=(\frac{x^2+3y^2}{3})=(\frac{x^2}{3}) [/mm] = 1$ wieso wird aus [mm] $(\frac{x^2+3y^2}{3})=(\frac{x^2}{3})$
[/mm]
Dies ist ein Widerspruch und damit kann $p [mm] \equiv [/mm] -1 (mod 3)$ nicht in dieser Form geschrieben werden.
red] ab hier versteh ich leider nichts mehr..:/[/red]
Sei also $p [mm] \equiv [/mm] 1 (mod 3)$ . Man erhält $p [mm] \equiv [/mm] 1 (mod 12)$ oder $p [mm] \equiv [/mm] 7 (mod 12)$ . Man erhält [mm] $(\frac{-3}{p})=1$[
[/mm]
Nun wählt man ein [mm] $r\in \IZ$ [/mm] mit [mm] $r^2\equiv [/mm] -3 (mod p)$ und [mm] $a\in \IN [/mm] $minimal mit$ a<p$ und [mm] $p
Damit erhalten wir [mm] ein$s\in \IN$ [/mm] mit$ [mm] ps=y^2+3x^2\le(a-1)^2+3(a-1)^2<4p [/mm] $
[mm] $\Rightarrow s\in\{1,2,3 \}$
[/mm]
Sei $s=3$, dann ist $3$ ein Teiler von $y$ und man erhält $ [mm] x^2=3(\frac{y}{3})^2=p$.
[/mm]
Sei$ s=2.$ Dann sind $x,y$ beide ungerade,wenn man modulo $2$ rechnet.
[mm] $(2p=y^2+3x^2\Rightarrow y^2+3x^2\equiv0(mod [/mm] 2)$ aber danach ungerade)
Wegen [mm] $y^2+3x^2\equivy^2-x^2\equiv [/mm] 0 (mod 4)$ Das steht aber im Widerspruch zu $2p [mm] \equiv [/mm] 2 (mod 4).$
Also verbleibt $S=1.$
ich wäre sehr dankbar für denk anstöße oder hilfe in irgendeiner weise..:/
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:35 So 13.08.2017 | Autor: | leduart |
Hallo
1. weil di ein x,y hast, das die Gleichung erfüllt.
2). 3=0mod 3 zur zweiten Frage.
sag mal Schritt für Schritt, was du nicht verstehst.
3.. p lässt immer den Rest 1 oder 2 bei Division durch 3 und 2=-1 mod3
p=1mod 3 d.h. p=n*3+1, da p ungerade, folge n gerade,
n=2 : p=7
n=4 p=13 also 1 mod 12
n=4k; p=12k+1
p=4lk+3, p=12k+7
kommst du jetzt weiter? sonst lies das Lemma nach
Gruß leduart
|
|
|
|