www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - lemma gruppenwirkung
lemma gruppenwirkung < Algebra < Algebra and Number Theoriy < University < Maths <
View: [ threaded ] | ^ Forum "Algebra"  | ^^ all forums  | ^ Tree of Forums  | materials

lemma gruppenwirkung: Frage (beantwortet)
Status: (Question) answered Status 
Date: 14:10 Mi 02/05/2018
Author: Mandy_90

Aufgabe
Sei G eine Gruppe, die auf einer Menge X wirkt. Dann gilt für alle x [mm] \in [/mm] X und g [mm] \in [/mm] G
[mm] G_{x^{g}}=G_{x}^{g}. [/mm]

Hallo,

ich verstehe nicht was dieses Lemma aussagen soll. Was ist [mm] G_{x^{g}} [/mm] ? [mm] x^{g}=f(x,g) [/mm] oder ? Und was ist [mm] G_{x}^{g}? [/mm]

lg
Mandy_90

        
Bezug
lemma gruppenwirkung: Frage (beantwortet)
Status: (Question) answered Status 
Date: 14:44 Mi 02/05/2018
Author: Mandy_90

Aufgabe
Sei G eine Gruppe und H [mm] \le [/mm] G. Dann gilt:
(a) WIrkt G trnsitiv auf einer Menge X, so sind folgende Aussagen äquivalent:
     (i) H wirkt transitiv auf X.
     (ii) Für alle x [mm] \in [/mm] X gilt: [mm] G=G_{x}H [/mm]
(b) Gilt [mm] G=HH^{g} [/mm] für ein g [mm] \in [/mm] G, so folgt G=H.

Hallo,
dieses Lemma versteh ich auch nicht. Wie ist ist [mm] G_{x}H [/mm] definiert ? Was kann ich mir unter [mm] HH^{g} [/mm] vorstellen ?

lg
Mandy

Bezug
                
Bezug
lemma gruppenwirkung: Antwort
Status: (Answer) finished Status 
Date: 08:34 Do 03/05/2018
Author: hippias

Auch hier findest Du kompetente Antwort in allen möglichen Lehrbüchern. Tip: 1. Komplexprodukt 2. Besser aufpassen, dann sparst Du enorm viel Zeit.



Bezug
        
Bezug
lemma gruppenwirkung: Tipp
Status: (Antwort) fehlerhaft Status 
Date: 06:37 Do 03/05/2018
Author: zahlenspieler

Hallo Mandy_90,
 weiss nicht, wie verbreitet diese Bezeichnung ist; aber [mm]G_{x}[/mm], wobei $G$ eine Gruppe und $x$ Element einer Menge ist, bezeichnet die Menge [mm]\{f(x,g) | g \in G\}[/mm]; dabei ist [mm]f: X \times G \to X[/mm] eine Abbildung (mit den in der Def. genannten Eigenschaften). Diese Menge ist die sog. Bahn bzw. Orbit von $x$. Ich vermute, dass mit [mm]G_{x}^{g}[/mm] die 'Bildmenge' der Funktion [mm](x,g) \mapsto f(x,g)[/mm] gemeint ist, dass Du also zeigen sollst: [mm]G_{x^{g}}=G_{x}[/mm].
Hth
Thomas

Bezug
                
Bezug
lemma gruppenwirkung: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Date: 08:24 Do 03/05/2018
Author: hippias


> Hallo Mandy_90,
>   weiss nicht, wie verbreitet diese Bezeichnung ist; aber
> [mm]G_{x}[/mm], wobei [mm]G[/mm] eine Gruppe und [mm]x[/mm] Element einer Menge ist,
> bezeichnet die Menge [mm]\{f(x,g) | g \in G\}[/mm]; dabei ist [mm]f: X \times G \to X[/mm]
> eine Abbildung (mit den in der Def. genannten
> Eigenschaften). Diese Menge ist die sog. Bahn bzw. Orbit
> von [mm]x[/mm].

Nein, das ist nicht die übliche Bezeichnung für den Orbit.

> Ich vermute, dass mit [mm]G_{x}^{g}[/mm] die 'Bildmenge' der
> Funktion [mm](x,g) \mapsto f(x,g)[/mm] gemeint ist, dass Du also
> zeigen sollst: [mm]G_{x^{g}}=G_{x}[/mm].

Nein, das ist nicht die Aufgabenstellung.

>  Hth
>  Thomas


Bezug
        
Bezug
lemma gruppenwirkung: Antwort
Status: (Answer) finished Status 
Date: 08:31 Do 03/05/2018
Author: hippias

Mandy_90! Definitionen findest Du im Skript, Büchern etc. Tip: Man nennt [mm] $G_{x}$ [/mm] auch den Stabilisator von $x$ in $G$. Die Aussage des Lemmas ist, dass die Mengen [mm] $G_{x^{g}}$ [/mm] und [mm] $G_{x}^{g}$ [/mm] gleich sind; es ist also eine Mengengleichheit zu zeigen. Diese zeigst Du wie üblich, indem Du beide Inklusionen nachrechnest.

Deine Interpretation von [mm] $x^{g}$ [/mm] ist richtig.

Wenn das nicht ausreicht, frage nocheinmal genauer nach.

Bezug
View: [ threaded ] | ^ Forum "Algebra"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 7h 06m 2. Fulla
S8-10/Bruchgleichung lösen
Status vor 7h 51m 4. leduart
DiffGlGew/Anfangswertaufgabe lösen
Status vor 13h 32m 14. Infinit
UElek/Leitungsumrechnung
Status vor 14h 19m 5. matux MR Agent
DiffGlGew/Anfangswertaufgabe lösen
Status vor 14h 42m 5. mathelernender
ZahlTheo/Dedekindsche Psi-Funktion
^ Seitenanfang ^
www.vorhilfe.de