www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - lim(x->oo)(1/x^(x-1))
lim(x->oo)(1/x^(x-1)) < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lim(x->oo)(1/x^(x-1)): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Mi 04.08.2004
Autor: El-Nolzo

Ich habe diese Frage in keinem weiteren Forum gestellt.

Hallo allerseits!
Ich habe noch eine Frage zu einem Grenzwert:

lim(x->oo)(1/x^(x-1))=0

ist meine Lsg., vorgeschlagen wird mir 1 als Lsg..
Meine Umformung:

1/x^(x-1)=x^(1-x)=e^((1-x)lnx)

und dabei geht meines Erachtens der Term des Exponenten für x->oo gegen -oo, woraus folgt: e^-oo=0.
Wer hat denn nun recht?

Gruß,

            Mecki!

        
Bezug
lim(x->oo)(1/x^(x-1)): Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Mi 04.08.2004
Autor: andreas

hi mecki

mit genau der selben rechnung wie du komme ich zum selben resultat wie du:

[m] \displaystyle{\lim_{x \to \infty} \dfrac{1}{x^{x-1}} = \lim_{x \to \infty} x^{1-x} = \lim_{x \to \infty} \exp((1-x) \ln(x)) } [/m]

wegen [m] \lim_{x \to \infty} (1-x) \ln(x) = - \infty [/m] erhälst du mit der stetigkeit der e-funktion

[m] \displaystyle{\lim_{x \to \infty} \dfrac{1}{x^{x-1}} = 0 } [/m]

also hast du recht und nicht "die lösung"!

andreas

Bezug
                
Bezug
lim(x->oo)(1/x^(x-1)): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Mi 04.08.2004
Autor: Hanno

Hi ihr beide.
Ist das eine Regel, dass man bei der Grenzqertbildung der Exponentialfunktion nur das Argument betrachten darf? Wenn ja, vondm ist sie?

Gruß,
Hanno

PS: Mecki, dein Buch ist echt klasse ;)

Bezug
                        
Bezug
lim(x->oo)(1/x^(x-1)): Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Mi 04.08.2004
Autor: andreas

hi Hanno

das ist eine grundlegende eigenschaft - in manchen fällen auch die definition - von stetigen funktionen $f$, dass gilt:

$$ [mm] \displaystyle{ \lim_{x \to x_0} f(x) = f \left( \lim_{x \to x_0} x \right) = f(x_0)} [/mm] $$

also dass man funktionsauswertung und grenzwertbildung vertauschen darf.
das kann man sich anschaulich auch halbwegs gut klar machen. da der graph von $f$ in punkten, in denen $f$ stetig ist keinen sprung macht ist es egal, ob man auf der $x$-achse läuft und erst an der stelle [mm] $x_0$ [/mm] schaut was die funktion macht, oder ob man sich auf dem graph der stelle [mm] $x_0$ [/mm] nähert. man wird beim selben punkt landen.

anders ist dies bei unstetigen funktionen, z.b.:

[mm] \theta (x) = \begin{cases} 0 & x < 0 \\ 1 & x \geq 0 \end{cases} [/mm]


wertest du die funktion im punkt [mm] $x_0 [/mm] = 0$ aus, so erhälst du [mm] $\theta(0) [/mm] = 1$, näherst du dich aber von links mit $x$, so erhälst du egal wie nah dein $x$ an 0 liegt so lange es nur kleiner als 0 ist immer [mm] $\theta(x) [/mm] = 0$ und damit insgesamt

[m] \displaystyle{1 = \theta(0) = \theta \left( \lim_{x \to 0} x \right) \not= \lim_{x \to 0-} \theta (x) = 0} [/m]

wobei [mm] $\lim_{x \to 0-}$ [/mm] den linksseitigen grenzwert bezeichnen soll. insbesondere existiert der grenzwert
$$ [mm] \displaystyle{ \lim_{x \to 0} \theta(x) } [/mm] $$
gar nicht, da links- und rechtsseitiger grenzwert unterschiedlich sind.

vielleicht etwas klarer geworden, sonst frage einfach nochmal nach.

andreas

Bezug
                                
Bezug
lim(x->oo)(1/x^(x-1)): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:33 Mi 04.08.2004
Autor: Hanno

Hi Andreas.
Ja, ist klar geworden, vielen Dank!


Gruß,
Hanno

Bezug
                
Bezug
lim(x->oo)(1/x^(x-1)): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 Do 05.08.2004
Autor: El-Nolzo

Hallo Andreas!

Danke für Deine Mühe. Aber bitte keine Bemerkungen über mein Mathebuch, sie können leider nur treffend sein. Hab´ mich nämlich selbst schon genug geärgert.

Gruß,

          Mecki!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de