www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - lin. un. Vektor zu einer Ebene
lin. un. Vektor zu einer Ebene < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin. un. Vektor zu einer Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Do 27.03.2008
Autor: Koenigspinguin

Aufgabe
Erzeugen Sie einen linear unabhänigen Vektor zur Ebene [mm] $E=\{(x,y,z)\in \IR³|x-2y+5z=0\}$, [/mm] der durch den Punkt P=(-1,3,-5) geht

Ich weiß nicht, wie ich ein linear unabhänigen Vektor zu dieser Ebene mit einem allgemeinen Verfahren finden kann. Ich habe zwei lin. unab. norm. Vektoren in der Ebene schon gefunden, jedoch eher durch raten als durch Systematik. [mm] v_1=(2/ \wurzel{5},1/ \wurzel{5},0) [/mm] und [mm] v_2=(1/3,-2/3,-1/3) [/mm]
nun soll ich dazu noch ein dritten lin. unabhängigen Vektor finden, jedoch weiß ich nicht wie ich systematisch an die sache rangehen kann. generell weiß ich, das ich eine Gerade finden muss, die durch den Punkt P geht und die Ebene schneidet. daher muss ich ja zuerst einmal einen linear unabhängigen vektor finden oder??

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
lin. un. Vektor zu einer Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Do 27.03.2008
Autor: MathePower

Hallo Koenigspinguin,

[willkommenmr]

> Erzeugen Sie einen linear unabhänigen Vektor zur Ebene
> [mm]E=\{(x,y,z)\in \IR³|x-2y+5z=0\}[/mm], der durch den Punkt
> P=(-1,3,-5) geht
>  Ich weiß nicht, wie ich ein linear unabhänigen Vektor zu
> dieser Ebene mit einem allgemeinen Verfahren finden kann.
> Ich habe zwei lin. unab. norm. Vektoren in der Ebene schon
> gefunden, jedoch eher durch raten als durch Systematik.
> [mm]v_1=(2/ \wurzel{5},1/ \wurzel{5},0)[/mm] und
> [mm]v_2=(1/3,-2/3,-1/3)[/mm]

Ein systematisches Vorgehen findet sich hier.

>  nun soll ich dazu noch ein dritten lin. unabhängigen
> Vektor finden, jedoch weiß ich nicht wie ich systematisch
> an die sache rangehen kann. generell weiß ich, das ich eine
> Gerade finden muss, die durch den Punkt P geht und die
> Ebene schneidet. daher muss ich ja zuerst einmal einen
> linear unabhängigen vektor finden oder??

Der steht auch schon da: Normalenform einer Ebene

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de