www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - lin gleichungssystem
lin gleichungssystem < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Mi 18.03.2009
Autor: Thomas87

Aufgabe
[Dateianhang nicht öffentlich]

Könnte man das Gleichungssystem nun einfach wie folgt aufstellen?

I 1 + x + y = 0
II 2 + x - y = 0
III -1 + x + y = 0

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
lin gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Mi 18.03.2009
Autor: leduart

Hallo
du bist im [mm] R^3 [/mm] also suchst du doch ein GS das Vektoren  Vektoren [mm] \vektor{x \\ y \\ z}\in [/mm] L herstellt.
das tut dein GS sicher nicht.
Dass es das nicht tut koenntest du doch eigentlich direkt sehen, setz nur mal den einfachsten Vektor [mm] \vektor{1 \\ 2\\ -1} [/mm] der in L liegt ein!
Gruss leduart

Bezug
                
Bezug
lin gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Mi 18.03.2009
Autor: Thomas87

Wie stelle ich dann das Gleichungssystem auf?

Bezug
                        
Bezug
lin gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 02:03 Do 19.03.2009
Autor: Marcel

Hallo Thomas,

> Wie stelle ich dann das Gleichungssystem auf?

Du weißt doch sicher, dass ein (i.a. inhomogenes) lineares Gleichungssystem der Art $A*x=b$ die Lösungsmenge [mm] $\tilde{x}+kern(A)=\{\tilde{x}+x:\; x \in kern(A)\}$ [/mm] hat, wobei [mm] $\tilde{x}$ [/mm] irgendeine Lösung der Gleichung $A*x=b$ ist, also [mm] $A*\tilde{x}=b$ [/mm] gilt.

Bei Dir ist z.B. die Wahl [mm] $\tilde{x}=(1,2,-1)^t \in \IR^3$ [/mm] möglich [mm] ($t\,$ [/mm] steht für transponiert) und Du weißt, dass [mm] $kern(A)=\text{linspan}((1,1,1)^t,\;(1,-1,1)^t)\,,$ [/mm] somit weißt Du insbesondere, dass [mm] $A\,$ [/mm] genau drei Spalten haben wird. Es ist aber unklar, wieviele Zeilen [mm] $A\,$ [/mm] haben soll. Es gibt also sicher sehr viele solcher Matrizen, die die gewünschte Lösungsmenge haben. Wobei es auch, wenn man die Zeilenzahl festhält, dann auch sehr viele Matrizen gibt, die das gewünschte leisten (wenn Du eine solche gefunden hast, so multipliziere nur eine Spalte oder eine Zeile mit irgendeinem Skalaren, und die so entstandene neue Matrix leistet auch das gewünschte).

Wir wissen nur, dass [mm] $A\,$ [/mm] mindestens eine Zeile haben sollte. Suche nun also für festes $n [mm] \in \IN$ [/mm] eine Matrix $A [mm] \in \IR^{n \times 3}$ [/mm] mit [mm] $kern(A)=\text{linspan}((1,1,1)^t,\;(1,-1,1)^t)$ [/mm] und berechne [mm] $b:=A*(1,2,-1)^t$, [/mm] und schon kannst Du solch ein Gleichungssystem hinschreiben. Der Einfachheit halber kannst Du dies schon für $n=1$ tun, so dass das Gleichungssystem nur aus einer Gleichung besteht.

Und wenn Du nun ein größeres $n [mm] \in \IN \setminus \{1\}$ [/mm] wählst, so werden wegen dem Dimensionssatz dann je zwei Spalten der Matrix [mm] $A\,$ [/mm] dann linear abhängig sein und wegen [mm] $Rang(A)=Rang(A^t)$ [/mm] dann auch je zwei Zeilen der Matrix [mm] $A\,$, [/mm] so dass sich auch dann das Gleichungssystem auf eine einzelne Zeile 'reduzieren' läßt. Man kann dann quasi sagen, dass dabei sehr viele Gleichungen 'redundant' sind.
(Eine [mm] $i\,$-te [/mm] Gleichung des durch  [mm] $Ax\,=\,b$ [/mm] beschriebenen Gleichungssystems heißt redundant, wenn sich die Lösungsmenge des durch die Gleichung $A*x=b$ beschriebenen Gleichungssystems durch weglassen der [mm] $i\,$-ten [/mm] Gleichung nicht ändert.
D.h. die [mm] $i\,$-te [/mm] Gleichung ist genau dann redundant, wenn gilt:
Entsteht $A'$ durch entfernen der [mm] $i\,$-ten [/mm] Zeile aus [mm] $A\,$ [/mm] und $b'$ durch entfernen der [mm] $i\,-$ten [/mm] Komponente von [mm] $b\,,$ [/mm] so haben [mm] $Ax\,=\,b$ [/mm] und $A'x=b'$ die gleiche Lösungsmenge. (Beachte dabei, dass [mm] $A'x\,$ [/mm] dabei immer noch definiert ist, weil [mm] $A'\,$ [/mm] ja genau so viele Spalten wie [mm] $A\,$ [/mm] hat, was der Anzahl der Komponenten des Spaltenvektors [mm] $x\,$ [/mm] entspricht.))

P.S.:
Probiere mal $A=(1,0,-1)$ und berechne [mm] $b:=(1,0,-1)*\vektor{1\\2\\-1}\,.$ [/mm] Wie lautet nun das 'Gleichungssystem'?

(Wichtig ist dabei, dass Du Dir klar machst, wieso ich [mm] $A\,$ [/mm] so gewählt habe. Dazu habe ich (aus den oben erwähnten Gründen) $A [mm] \in \IR^{1 \times 3}\,,$ [/mm] also [mm] $A=(a_1,\,a_2,\,a_3)$ [/mm] angenommen und notwendigerweise soll ja [mm] $A*(1,1,1)^t=0$ [/mm] und [mm] $A*(1,-1,1)^t=0$ [/mm] gelten (die [mm] $0\,$ [/mm] rechterhand ist jeweils [mm] $\in \IR\,,$ [/mm] da [mm] $A\,$ [/mm] eine lineare Abbildung [mm] $\IR^3 \to \IR$ [/mm] ist), was eine notwendige Bedingung für [mm] $a_2$ [/mm] liefert und [mm] $a_1$ [/mm] in Bezug zu [mm] $a_3$ [/mm] stellt. Ferner ist [mm] $Rang(A)\,=1$ [/mm] zu beachten, so dass ein Wert für [mm] $a_1$ [/mm] (und damit hier auch für [mm] $a_3$) [/mm] nicht in Frage kommt.)

P.P.S.:
Analog könntest Du die Aufgabe (im Gegensatz zu dem eben mehr algebraischen nun ein wenig mehr geometrischen Wege) auch so angehen:
[mm] $\mathcal{L}$ [/mm] beschreibt eine Ebene im [mm] $\IR^3$ [/mm] in ihrer []Parameterdarstellung:
[mm] $$\mathcal{L}=\left\{x=\vektor{x_1\\x_2\\x_3}:\;\;\;x=\vektor{1\\2\\-1}+s*\vektor{1\\1\\1}+t*\vektor{1\\-1\\1}\;\;\;s,t \in \IR\right\}\,.$$ [/mm]

Nun sollst Du diese Parameterform in Koordinatenform umwandeln, was so geht, dass Du aus dem oben entstehenden Gleichungssystem
[mm] $$x_1=1+s+t$$ [/mm]
[mm] $$x_2=2+s-t$$ [/mm]
[mm] $$x_3=-1+s+t$$ [/mm]
die Variablen [mm] $s\,$ [/mm] und [mm] $t\,$ [/mm] eliminierst, z.B. mit dem Gaußverfahren, allerdings hier bzgl. [mm] $s\,$ [/mm] und [mm] $t\,$ [/mm] angewendet. (Anwendung z.B. auf die ersten beiden Gleichungen, die so errechneten [mm] $s\,$ [/mm] und [mm] $t\,$ [/mm] werden dann in die dritte Gleichung eingesetzt.)

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de