www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - linear/ injektiv ,euklid. VR.
linear/ injektiv ,euklid. VR. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linear/ injektiv ,euklid. VR.: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:33 Di 24.11.2015
Autor: PeterPaul

Aufgabe
Es seien $V$ und  $W$ euklidische Vektorräume mit Skalarprodukten $( ; ) $ und   $< ; >. $
Weiter sei [mm] $\varphi: [/mm] V [mm] \to [/mm] W$ eine Abbildung, die $ [mm] \varphi(0)=0$ [/mm] und [mm] $(v,w)=<\varphi(v),\varphi(w)>$ [/mm] für alle $v,w [mm] \in [/mm] V$ erfüllt.Zeigen sie,dass [mm] $\varphi [/mm] $ linear und injektiv ist.

Beweis:

Linear Abb.:

$ [mm] \varphi(v+w,z)=(v+w,z)$ [/mm] jetzt linearität der 1.Komponente $ [mm] \varphi(v+w,z)=(v+w,z)=(v,z)+(w,z)=<\varphi(v),\varphi(z)>+<\varphi(w),\varphi(z)>$ [/mm]

das jetzt für die 2 .komponente

$ [mm] \varphi(z,v+w)=(z,v+w)$ [/mm] jetzt linearität der 2.Komponente $ [mm] \varphi(z,v+w)=(z,v+w)=(z,v)+(z,w)=<\varphi(z),\varphi(v)>+<\varphi(z),\varphi(w)>$ [/mm]


[mm] $\Rightarrow \varphi$ [/mm] linear


jetzt noch die homogenität

[mm] $\varphi(\alpha v,\beta [/mm] w)= [mm] (\alpha v,\beta [/mm] w)$ homogenität 1. und 2. komponente [mm] $\varphi(\alpha v,\beta [/mm] w)= [mm] (\alpha v,\beta [/mm] w)= [mm] \alpha (v,w)\beta=<\alpha \varphi(v),\varphi(w) \beta>$ [/mm]


kann man das so machen?

bei der injektivität,weis ich noch nicht,wie ich's machen soll, ich weiss,dass 'ne lin.abb. injektiv ist,wenn der Kern nur aus der $ 0$  besteht, und dass $ [mm] \varphi(0)=0$ [/mm]  ist schon mal geil,aber ich kann da nichts mit machen bisher...:/


        
Bezug
linear/ injektiv ,euklid. VR.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Di 24.11.2015
Autor: angela.h.b.


> Es seien [mm]V[/mm] und  [mm]W[/mm] euklidische Vektorräume mit
> Skalarprodukten [mm]( ; )[/mm] und   [mm]< ; >.[/mm]
>  Weiter sei [mm]\varphi: V \to W[/mm]
> eine Abbildung, die [mm]\varphi(0)=0[/mm] und
> [mm](v,w)=<\varphi(v),\varphi(w)>[/mm] für alle [mm]v,w \in V[/mm]
> erfüllt.Zeigen sie,dass [mm]\varphi[/mm] linear und injektiv ist.
>  Beweis:
>  
> Linear Abb.:
>  
> [mm]\varphi(v+w,z)=(v+w,z)[/mm]

Hallo,

Du hast die Aufgabe nicht richtig gelesen oder nicht richtig verstanden.

Wir haben eine Abbildung [mm] \varphi, [/mm] die aus dem VR  V in den VR W abbildet.

Es steht aber nirgendwo, daß [mm] \varphi [/mm] das Skalarprodukt ( , ) im VR V ist.

Zu zeigen ist

[mm] \varphi (v+v')=\varphi (v)+\varphi [/mm] (v') f.a. [mm] v.v'\in [/mm] V
und
[mm] \varphi (\alpha v)=\alpha \varphi [/mm] (v) f.a. [mm] v\in [/mm] V, [mm] \alpha\in \IR, [/mm]

weiter dann die Injektivität.

LG Angela


> jetzt linearität der 1.Komponente
> [mm]\varphi(v+w,z)=(v+w,z)=(v,z)+(w,z)=<\varphi(v),\varphi(z)>+<\varphi(w),\varphi(z)>[/mm]
>  
> das jetzt für die 2 .komponente
>
> [mm]\varphi(z,v+w)=(z,v+w)[/mm] jetzt linearität der 2.Komponente
> [mm]\varphi(z,v+w)=(z,v+w)=(z,v)+(z,w)=<\varphi(z),\varphi(v)>+<\varphi(z),\varphi(w)>[/mm]
>  
>
> [mm]\Rightarrow \varphi[/mm] linear
>  
>
> jetzt noch die homogenität
>  
> [mm]\varphi(\alpha v,\beta w)= (\alpha v,\beta w)[/mm] homogenität
> 1. und 2. komponente [mm]\varphi(\alpha v,\beta w)= (\alpha v,\beta w)= \alpha (v,w)\beta=<\alpha \varphi(v),\varphi(w) \beta>[/mm]
>
>
> kann man das so machen?
>  
> bei der injektivität,weis ich noch nicht,wie ich's machen
> soll, ich weiss,dass 'ne lin.abb. injektiv ist,wenn der
> Kern nur aus der [mm]0[/mm]  besteht, und dass [mm]\varphi(0)=0[/mm]  ist
> schon mal geil,aber ich kann da nichts mit machen
> bisher...:/
>  


Bezug
                
Bezug
linear/ injektiv ,euklid. VR.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Di 24.11.2015
Autor: PeterPaul

hi:)

danke für deine antwort,aber wie soll man [mm] \varphi(v+v') [/mm] dann anwenden ,also ich meine [mm] \varphi(v+v')=? [/mm] das verstehe ich irgendwie nicht..:/

Bezug
                        
Bezug
linear/ injektiv ,euklid. VR.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Di 24.11.2015
Autor: Gonozal_IX

Hiho,

naja, du sollst zeigen:

[mm] $\varphi(v [/mm] + w) = [mm] \varphi(v) [/mm] + [mm] \varphi(w)$ [/mm]

oder äquivalent dazu:

[mm] $\varphi(v [/mm] + w) - [mm] \varphi(v) [/mm] - [mm] \varphi(w) [/mm] = 0$

Na und nun überlege mal, was für das Skalarprodukt eines Ausdrucks gelten muss, damit ein Ausdruck Null ist.

Gruß,
Gono

Bezug
                        
Bezug
linear/ injektiv ,euklid. VR.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Mi 25.11.2015
Autor: angela.h.b.


> hi:)
>  
> danke für deine antwort,aber wie soll man [mm]\varphi(v+v')[/mm]
> dann anwenden ,also ich meine [mm]\varphi(v+v')=?[/mm] das verstehe
> ich irgendwie nicht..:/

Hallo,

zu zeigen ist ja

$ [mm] \varphi(v [/mm] + w) = [mm] \varphi(v) [/mm] + [mm] \varphi(w) [/mm] $ f.a. [mm] v,w\in [/mm] V,

was, wie Gonozal bereits erwähnt,

äquivalent ist zu

$ [mm] \varphi(v [/mm] + w) - [mm] \varphi(v) [/mm] - [mm] \varphi(w) [/mm] = 0 $.


Nun berechne doch mal

[mm] <\varphi(v [/mm] + w) - [mm] \varphi(v) [/mm] - [mm] \varphi(w),\varphi(v [/mm] + w) - [mm] \varphi(v) [/mm] - [mm] \varphi(w)> [/mm]

und ziehe Deine Schlüsse aus dem Ergebnis.

LG Angela



Bezug
                        
Bezug
linear/ injektiv ,euklid. VR.: Antwort
Status: (Antwort) fertig Status 
Datum: 00:16 Do 26.11.2015
Autor: Marcel

Hallo,

> hi:)
>  
> danke für deine antwort,aber wie soll man [mm]\varphi(v+v')[/mm]
> dann anwenden ,also ich meine [mm]\varphi(v+v')=?[/mm] das verstehe
> ich irgendwie nicht..:/

ich ergänze das, was schon gesagt wurde, durch etwas, was hoffentlich
bekannt ist (ansonsten ist der Beweis dazu elementar, und selbst, wenn
man ihn nicht hinbekommt, findet man ihn in vielen Lehrbüchern zur
linearen Algebra):

Ist der Vektorraum [mm] $V\,$ [/mm] mit einem Skalarprodukt $s: V [mm] \times [/mm] V [mm] \to [/mm] V$ ausgestattet,
so induziert dieses Skalarprodukt durch

    $N [mm] \colon [/mm] V [mm] \to [0,\infty)$ [/mm] mit [mm] $N(v):=\sqrt{s(v,v)}$ [/mm]

eine Norm auf [mm] $V\,.$ [/mm]

Wenn man das beweist, so hat man insbesondere

    $N(v)=0$ [mm] ($\in [0,\infty)$) $\Rightarrow$ [/mm] $v=0$ (die [mm] $0\in [/mm] V$)

zu beweisen.

Wenn Du willst: Such' bei Wiki nach "Skalarproduktnorm".

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de