www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - linear unabhängige Fkt.
linear unabhängige Fkt. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linear unabhängige Fkt.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:36 Mi 16.11.2005
Autor: Alias

Hi!

Für folgende Aufgabe gabs 2 Punkte. Hab für meine
Lös.nur einen Punkt bekommen. War das gnädig?
Wie geht es richtig?

Frage:
Betrachte den Vektorraum der stetigen Fkt. von [0,1]
nach [mm] \IR. [/mm] Zeige, dass die beiden Fkt. [mm] e^{t} [/mm] und [mm] e^{2t} [/mm]
lin. unabhängig sind. Bilden diese Fkt. auch eine Basis
des Vektorraums der stetigen Fkt von [0,1] nach [mm] \IR? [/mm]


Lösung:

[mm] V=\IR[/mm] [t]
[mm] e^{t}, e^{2t} \in [/mm] V
[mm] \lambda_{1},\lambda_{2} \in \IR [/mm]

Da [mm] \lambda_{1}e^{t}+\lambda_{2}e^{2t}=0 [/mm]
folt daraus [mm] \forall e^{nt} \in \IR [/mm] hat das Polynom den
Wert 0. Also muß auch [mm] \lambda_{1}=\lambda_{2}=0 [/mm] sein.
Also sind die Fkt. lu.

Zur Basis reicht es nicht, da z.B.

[mm] \lambda_{1}e^{t}+\lambda_{2}e^{2t}\not=e^{3t} [/mm]

Daraus folgt kein Erzeugendensystem, also keine Basis.

Danke!

        
Bezug
linear unabhängige Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Mi 16.11.2005
Autor: angela.h.b.


> Hi!
>  
> Für folgende Aufgabe gabs 2 Punkte. Hab für meine
>  Lös.nur einen Punkt bekommen.

Hallo,

daran muß man sich gewöhnen.
Wahrscheinlich gehörst Du zu den Leuten, denen in der Schule alles zugeflogen ist, und dann so etwas...


>War das gnädig?


Ja. Weil du das, was Du zeigen wolltest, nicht nachvollziehbar gezeigt hast.
Den Punkt hast Du bekommen, weil die gemerkt haben, daß Du weißt, was Du zeigen mußt.

>  Wie geht es richtig?
>  
> Frage:
>  Betrachte den Vektorraum der stetigen Fkt. von [0,1]
> nach [mm]\IR.[/mm] Zeige, dass die beiden Fkt. f(x)= [mm]e^{t}[/mm] undg(x) [mm]e^{2t}[/mm]
>  lin. unabhängig sind. Bilden diese Fkt. auch eine Basis
>  des Vektorraums der stetigen Fkt von [0,1] nach [mm]\IR?[/mm]


Seien k,l [mm] \in \IR [/mm] mit

0=kf + lg

==> es ist [mm] 0=ke^t+le^{2t} [/mm] für alle t [mm] \in [/mm] [0,1]
==> [mm] 0=e^t(k+le^t) [/mm] f.a. t [mm] \in [/mm] [0,1]
==> [mm] k+le^t=0 [/mm]  f.a.t , denn [mm] e^t \not=0 [/mm] für alle t [mm] \in [/mm] [0,1]
==> k=-l (t=0 eingesetzt) und k=-le  (t=1 eingesetzt)
==> k=l=0 oder e=1  

Letzteres ist nicht der Fall, also folgt

k=l=0.

Somit sind f und g linear unabhängig.


Leider reicht meine Zeit im Moment nicht mehr für die Basis.

Ich würde zeigen, daß man die konstante Funktion mit h(x)=1 nicht als Linearkombination darstellen kann.

Gruß v. Angela

Bezug
                
Bezug
linear unabhängige Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Mi 16.11.2005
Autor: Alias

Salve Angela!

1. fliegt mir nichts einfach so zu.
2. Gehts nicht um den 1 Punkt, sondern um eine bessere Lösung.

Das war wohl falsch angekommen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de