www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - lineare Abb.
lineare Abb. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:53 Di 01.01.2013
Autor: Sqrt3

Aufgabe
Sei V ein endlichdimensionaler, W ein beliebiger Vektorraum, seien [mm] U_{1}, U_{2} \subseteq [/mm] V Untervektorräume. Gegeben seien weitergin zwei lineare Abb. [mm] f_{1} [/mm] : [mm] U_{1} \to [/mm] W, [mm] f_{2} [/mm] : [mm] U_{2} \to [/mm] W mit [mm] f_{1}|U_{1} \cap U_{2} [/mm] = [mm] f_{2}|U_{1} \cap U_{2}. [/mm]
Zeigen Sie, dass es eine lineare Abb. f . V [mm] \to [/mm] W mit [mm] f|U_{1} [/mm] = [mm] f_{1}, f|U_{2} [/mm] = [mm] f_{2} [/mm] gibt.





So wünsche euch ein frohes neues Jahr und viel Glück für das kommende Jahr, aber leider bräuchte ich wieder eure Hilfe.

Bei dieser Aufgabe verstehe ich nicht, was das '' | '' bei [mm] f_{1} [/mm] : [mm] U_{1} \to [/mm] W, [mm] f_{2} [/mm] : [mm] U_{2} \to [/mm] W mit [mm] f_{1}|U_{1} \cap U_{2} [/mm] = [mm] f_{2}|U_{1} \cap U_{2} [/mm] und bei [mm] f|U_{1} [/mm] = [mm] f_{1}, f|U_{2} [/mm] = [mm] f_{2} [/mm] bedeuten soll. Hat das die selbe Bedeutung wie bei den Vorschriften, also x = [mm] {y|y\in\IR} [/mm] ?  

Würde mich freuen, wenn mir jemand antwortet :D.


        
Bezug
lineare Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Di 01.01.2013
Autor: angela.h.b.


> Sei V ein endlichdimensionaler, W ein beliebiger
> Vektorraum, seien [mm]U_{1}, U_{2} \subseteq[/mm] V
> Untervektorräume. Gegeben seien weitergin zwei lineare
> Abb. [mm]f_{1}[/mm] : [mm]U_{1} \to[/mm] W, [mm]f_{2}[/mm] : [mm]U_{2} \to[/mm] W mit
> [mm]f_{1}|U_{1} \cap U_{2}[/mm] = [mm]f_{2}|U_{1} \cap U_{2}.[/mm]
>  Zeigen
> Sie, dass es eine lineare Abb. f . V [mm]\to[/mm] W mit [mm]f|U_{1}[/mm] =
> [mm]f_{1}, f|U_{2}[/mm] = [mm]f_{2}[/mm] gibt.
>  
>
>
>
> So wünsche euch ein frohes neues Jahr und viel Glück für
> das kommende Jahr, aber leider bräuchte ich wieder eure
> Hilfe.
>  
> Bei dieser Aufgabe verstehe ich nicht, was das '' | '' bei
> [mm]f_{1}[/mm] : [mm]U_{1} \to[/mm] W, [mm]f_{2}[/mm] : [mm]U_{2} \to[/mm] W mit [mm]f_{1}|U_{1} \cap U_{2}[/mm]
> = [mm]f_{2}|U_{1} \cap U_{2}[/mm] und bei [mm]f|U_{1}[/mm] = [mm]f_{1}, f|U_{2}[/mm] =  [mm]f_{2}[/mm] bedeuten soll.

Hallo,

[mm] "$f_{1}|U_{1} \cap U_{2}$" [/mm] bedeutet: [mm] f_1 [/mm] eingeschränkt auf [mm] U_{1} \cap U_{2}. [/mm]

[mm] f_1 [/mm] ist ja eigentlich auf ganz [mm] U_1 [/mm] definiert, und jetzt betrachtest Du diese Funktion nur auf der Teilmenge [mm] U_{1} \cap U_{2}. [/mm]

LG Angela







Hat das die selbe Bedeutung wie bei

> den Vorschriften, also x = [mm]{y|y\in\IR}[/mm] ?  
>
> Würde mich freuen, wenn mir jemand antwortet :D.
>  


Bezug
                
Bezug
lineare Abb.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Di 01.01.2013
Autor: Sqrt3

Also muss ich zuerst zeigen, dass es eine Abb. V  [mm] \to [/mm]  W mit  [mm] f|U_{1} [/mm] = [mm] f_{1}, f|U_{2} [/mm] = [mm] f_{2} [/mm]  gibt  und dann, ob sie linear ist, aber wie zeige ich denn, dass es so eine Abb. gibt?


Bezug
                        
Bezug
lineare Abb.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:17 Mi 02.01.2013
Autor: angela.h.b.


> Also muss ich zuerst zeigen, dass es eine Abb. V  [mm]\to[/mm]  W
> mit  [mm]f|U_{1}[/mm] = [mm]f_{1}, f|U_{2}[/mm] = [mm]f_{2}[/mm]  gibt  und dann, ob
> sie linear ist, aber wie zeige ich denn, dass es so eine
> Abb. gibt?

Hallo,

indem Du sie definierst und dann zeigst, daß sie alles tut, was sie tun soll.

Versuch mal über die Basen zu gehen:

eine basis von [mm] U_1\cap U_2 [/mm] kannst Du zu einer Basis von [mm] U_1 [/mm] und [mm] U_2 [/mm] ergänzen.

Dann weißt Du - oder solltest wissen -, daß lineare Abbildungen durch die Funktionswerte auf einer Basis eindeutig bestimmt sind.

Wenn du in diese Richtung denkst, solltest Du zum Ziel kommen.

LG Angela

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de