www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - lineare Abbildung
lineare Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Sa 03.05.2008
Autor: miniscout

Aufgabe
Ist die Abbildung linear? Begründen Sie. Dabei seien [mm] n,m\in\IN [/mm] , [mm] a\in\IR [/mm] und [mm] A\in\IR^{m\times n} [/mm] gegeben.
(c) [mm] $f:C^1(\IR)\to C^0(\IR)$ [/mm] mit $(f(u))(x)=u'(x)$

Kommentar zur Notation: [mm] C^1(\IR) [/mm] steht für den Vektorraum aller einmal stetig differenzierbaren Funktionen [mm] u:\IR\to\IR [/mm] und [mm] C^0(\IR) [/mm] für den Vektorraum aller stetigen Funktionen [mm] u:\IR\to\IR [/mm] .

Hallo,

Ich stehe vor einem kleinen Problem, die Aufgabe oben gehört zu meiner Mathehausübung. Die Teilaufgaben (a) und (b) habe ich mittels Additivität und Homogenität bewiesen bzw. widerlegt. Bei der (c) hier weiß ich nicht so recht, wie ich anfangen soll. Zumal ich die Notation trotz Anmerkung nicht verstehe, kann mir jemand von euch weiterhelfen?

Danke und Gruß,
miniscout [sunny]

        
Bezug
lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Sa 03.05.2008
Autor: felixf

Hallo miniscout,

> Ist die Abbildung linear? Begründen Sie. Dabei seien
> [mm]n,m\in\IN[/mm] , [mm]a\in\IR[/mm] und [mm]A\in\IR^{m\times n}[/mm] gegeben.
>  (c) [mm]f:C^1(\IR)\to C^0(\IR)[/mm] mit [mm](f(u))(x)=u'(x)[/mm]
>  
> Kommentar zur Notation: [mm]C^1(\IR)[/mm] steht für den Vektorraum
> aller einmal stetig differenzierbaren Funktionen
> [mm]u:\IR\to\IR[/mm] und [mm]C^0(\IR)[/mm] für den Vektorraum aller stetigen
> Funktionen [mm]u:\IR\to\IR[/mm] .
>
> Ich stehe vor einem kleinen Problem, die Aufgabe oben
> gehört zu meiner Mathehausübung. Die Teilaufgaben (a) und
> (b) habe ich mittels Additivität und Homogenität bewiesen
> bzw. widerlegt. Bei der (c) hier weiß ich nicht so recht,
> wie ich anfangen soll. Zumal ich die Notation trotz
> Anmerkung nicht verstehe, kann mir jemand von euch
> weiterhelfen?

Vorweg: Funktionenvektorraeume sind alles andere als anschaulich. Man muss sich einfach dran gewoehnen, dass Vektoren nicht Pfeile sind ;-) sondern irgendwelche Objekte, von denen man halt nur weiss das man sie zusammenaddieren kann und mit reellen Zahlen multiplizieren kann.

Also, erstmal zu den Vektorraeumen [mm] $C^0$ [/mm] und [mm] $C^1$. [/mm] Wenn du eine stetige (stetig diffbare) Funktion $f$ nimmst und sie punktweise mit einer Konstanten [mm] $\lambda$ [/mm] multiplizierst, also die Funktion $g$ mit $g(x) := [mm] \lambda [/mm] f(x)$ betrachtest (diese wird mit [mm] $\lambda [/mm] f$ bezeichnet), dann ist dies ebenfalls eine stetige (stetig diffbare) Funktion. Ebenso ist die punktweise Summe von zwei stetigen (stetig diffbaren) Funktionen wieder stetig (diffbar). Damit sind [mm] $C^0$ [/mm] und [mm] $C^1$ [/mm] mit den punktweisen Verknuepfungen Vektorraeume.

So. Jetzt hast du die Abbildung $f : [mm] C^1 \to C^0$. [/mm] Diese nimmt eine stetig diffbare Funktion $u [mm] \in C^1$ [/mm] und nimmt davon die Ableitung $u'$ -- diese ist nach Voraussetzung stetig. Es ist also $f(u) = u' [mm] \in C^0$, [/mm] oder anders geschrieben, fuer jedes $x [mm] \in \IR$ [/mm] gilt $f(u)(x) = u'(x)$ (zwei Funktionen sind gleich wenn sie an allen Funktionswerten uebereinstimmen).

$f$ ist also der (sogenannte) Ableitungsoperator, der einer Funktion deren Ableitung zuordnet. Du sollst jetzt zeigen, dass er eine lineare Abbildung ist.

Machen wir das mal im Fall der Homogenitaet. Ist $u [mm] \in C^0$ [/mm] und [mm] $\lambda \in \IR$, [/mm] so musst du [mm] $f(\lambda [/mm] u) = [mm] \lambda [/mm] f(u)$ zeigen. Jetzt sind $g := [mm] f(\lambda [/mm] u)$ und $h := [mm] \lambda [/mm] f(u)$ wieder Funktionen (stetige), und fuer ein $x [mm] \in \IR$ [/mm] gilt $g(x) = [mm] (f(\lambda [/mm] u)(x)) = [mm] (\lambda [/mm] u)'(x)$ und $h(x) = [mm] (\lambda [/mm] f(u))(x) = [mm] \lambda [/mm] (f(u))(x)  [mm] \lambda [/mm] u'(x)$. Du musst also gerade zeigen, dass [mm] $(\lambda \cdot [/mm] u)'(x) = [mm] \lambda \cdot [/mm] u'(x)$ ist! Aber das ist eine bekannte Ableitungsregel...

LG Felix


Bezug
                
Bezug
lineare Abbildung: dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:15 Sa 03.05.2008
Autor: miniscout

Danke, danke, danke!

Ja, das ist eigentlich logisch. Mich hat wohl die Schreibweise etwas verwirrt. Hätte gedacht, dass es dann

$f(u(x))=u'(x)$

heißt und nicht

$(f(u))(x)=u'(x)$

Naja, auf alle Fälle [flowers] für die Antworten!

Gruß miniscout


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de