www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - lineare Abbildung /Bild /Kern
lineare Abbildung /Bild /Kern < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abbildung /Bild /Kern: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:41 Mi 01.12.2004
Autor: Sandra21

Halloo

ich komme mit einer anderen Aufgabe auch überhaupt nicht weiter.

Kann mir jemand helfen.

Es sei V ein n-dimensionaler Vektorraum über K und A: V  [mm] \to [/mm] V eine lineare Abbildung.
Zeigen Sie:
(i) Gilt Kern(A)=Bild(A), so ist n gerade. Geben Sie Beispiele für eine solche lineare Abbildung an.

(ii) Ist A injektiv, so bildet A linear unabhängige Vektoren wieder auf linear unabhängige Vektoren ab.

Es wäre super wenn mir jemand helfen könnte.

Danke
Sandra

ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
lineare Abbildung /Bild /Kern: Dimensionsformel
Status: (Antwort) fertig Status 
Datum: 14:31 Mi 01.12.2004
Autor: Gnometech

Hallo Sandra!

Also, die erste Aufgabe ist ganz einfach mit Hilfe der Dimensionsformel für lineare Abbildungen zu lösen - war die in der Vorelsung dran? Sie besagt folgendes:

Sei $f: V [mm] \to [/mm] W$ eine lineare Abbildung, dann gilt:

[mm] $\dim [/mm] V = [mm] \dim [/mm] Kern(f) + [mm] \dim [/mm] Im(f)$

Wobei ich mit $Im(f)$ das Bild meine.

Für den zweiten Teil hilft Dir bestimmt folgende Aussage weiter:

"Eine lineare Abbildung $A$ ist genau dann injektiv, wenn gilt: $Kern(A) = [mm] \{ 0 \}$. [/mm]

Damit ist dieser Teil auch kein Problem mehr. :-)

Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de