www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - lineare Abbildungen prüfen
lineare Abbildungen prüfen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abbildungen prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Sa 10.11.2007
Autor: dorix

Aufgabe
Welche der folgenden Abbildungen zwischen IR- Vektorräumen sind linear?

a) [mm] f_1 [/mm] :[mm] \IR^4 \rightarrow \IR^4 , (x_1, x_2, x_3, x_4) \rightarrow \ (x_1x_2,x_2 - x_1,x_3, x_4)[/mm]
b) [mm] f_2 [/mm] :[mm] \IR^4 \rightarrow \IR^4 , (x_1, x_2, x_3, x_4)\rightarrow \ (x_1 + x_2 + x_4, 2x_4, 3x_4, 4x_1 + 5x_2 + x_3 + x_4)[/mm]
c) [mm] f_3 [/mm] :[mm] \IR^n \rightarrow \IR^n , x \rightarrow \ x + x_0 [/mm], für einen festen Vektor  [mm] x_0 \in\IR^n \ ) [/mm]
d) [mm] f_4 [/mm] :[mm] \IR^n \rightarrow \IR^2^n , (x_1,..., x_n) \rightarrow \ (x_1,...,x_n, x_1,...,x_n)[/mm]

Wie beweise ich Linearität?
Muss ich Additivität und Homogenität für je zwei Abbildungen prüfen? Wenn ja, wie?
Schreib Montag Klausur und hab noch so viel aufzuarbeiten, dass ich den neuen Stoff kaum schaffe.
Könnte mir jemand ein Beispiel geben? Bitte Bitte;-)

lg dorix

        
Bezug
lineare Abbildungen prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Sa 10.11.2007
Autor: Gilga

linear: f(x+y)=f(x)+f(y) und f(sx)=sf(x); für alle skalare s und vektoren x y
z.b. 3) [mm] f(x+y)=x+y+$x_0$ $\not=$ x+$x_0$ [/mm]  +y [mm] +$x_0$ [/mm] =f(x)+f(y)

Probier mal die anderen Aufgaben selber

Bezug
                
Bezug
lineare Abbildungen prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Sa 10.11.2007
Autor: dorix

Wie kommt man denn auf diese Umformung?

>  z.b. 3) f(x+y)=x+y+[mm]x_0[/mm] [mm]\not=[/mm] x+[mm]x_0[/mm]  +y +[mm]x_0[/mm] =f(x)+f(y)


Ich bekomm das nicht hin...

lg dorix

Bezug
                        
Bezug
lineare Abbildungen prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Sa 10.11.2007
Autor: angela.h.b.


> Wie kommt man denn auf diese Umformung?
>  
> >  z.b. 3) f(x+y)=x+y+[mm]x_0[/mm] [mm]\not=[/mm] x+[mm]x_0[/mm]  +y +[mm]x_0[/mm] =f(x)+f(y)

Hallo,

berechne f(x+y) und f(x)+f(y) und vergleiche.

Gruß v. Angela

Bezug
                                
Bezug
lineare Abbildungen prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Sa 10.11.2007
Autor: dorix


> Hallo,
>  
> berechne f(x+y) und f(x)+f(y) und vergleiche.
>  

wenn ich wüsste, wie f(x+y) und f(x)+f(y) aussieht, täte ich das sicherlich...
aber ich weiß nichts mit der Abbildungsvorschrift anzufangen. z.B. 1) [mm] "x_1,x_2...wird [/mm] auf [mm] x_1x_2,..." [/mm] abgebildet?
bitte noch ein wenig Hilfestellung, danke

lg


Bezug
                                        
Bezug
lineare Abbildungen prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Sa 10.11.2007
Autor: angela.h.b.


> > Hallo,
>  >  
> > berechne f(x+y) und f(x)+f(y) und vergleiche.
>  >  
> wenn ich wüsste, wie f(x+y) und f(x)+f(y) aussieht, täte
> ich das sicherlich...


Wir sind ja gerade bei

> c) $ [mm] f_3 [/mm] $ :$ [mm] \IR^n \rightarrow \IR^n [/mm] , x [mm] \rightarrow [/mm] \ x + [mm] x_0 [/mm] $, für einen festen Vektor  $ [mm] x_0 \in\IR^n [/mm] \ ) $

Also ist [mm] f(x)=x+x_0 [/mm]

Was ist denn dann f(x+y)?




>  aber ich weiß nichts mit der Abbildungsvorschrift
> anzufangen. z.B. 1) [mm]"x_1,x_2...wird[/mm] auf [mm]x_1x_2,..."[/mm]


a) $ [mm] f_1 [/mm] $ [mm] :$\IR^4 \rightarrow \IR^5 [/mm] , [mm] (x_1, x_2, x_3, x_4) \rightarrow [/mm] \ [mm] (x_1,x_2,x_2 [/mm] - [mm] x_1,x_3, x_4) [/mm] $

Das ist eine Abbildung v. [mm] \IR^4 [/mm] in den [mm] \IR^5. [/mm]

Ich weiß nicht, was ich da noch erklären soll... Für [mm] x:=\vektor{x_1\\ x_2\\x_3\\x_4} [/mm] ist [mm] f(x)=f\vektor{x_1\\ x_2\\x_3\\x_4}:=\vektor{x_1\\ x_2\\x_2-x_1\\x_3\\x_4}. [/mm]
In der Linearitätsbedingung mußt Du dann für x den Vektpor [mm] \vektor{x_1\\ x_2\\x_3\\x_4} [/mm] nehmen und für y entsprechend.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de