www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - lineare Annäherung
lineare Annäherung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Annäherung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Mo 28.09.2009
Autor: toteitote

Aufgabe
Find the linear approximations to the following functions about x=0
a) [mm] f(x)=(1+x)^{-1} [/mm]

Hallo, allerseits. Ich habe echt nicht den blassesten Schimmer, wie ich an die Aufgabe rangehen soll. Ich habe von der Sorte noch ein paar zu lösen. Kann mir jemand an diesem Beispiel zeigen, wie man das rechnet?
Vielen Dank, Tiemo

        
Bezug
lineare Annäherung: Reihenentwicklung
Status: (Antwort) fertig Status 
Datum: 22:00 Mo 28.09.2009
Autor: Loddar

Hallo Tiemo!


Stelle die []Taylor-Reihe um den Entwicklungspunkt [mm] $x_0 [/mm] \ = \ 0$ bis zur Potenz [mm] $x^1$ [/mm] auf.


Gruß
Loddar


Bezug
                
Bezug
lineare Annäherung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:50 Mo 28.09.2009
Autor: toteitote

Hallo, Lothar, ich habe noch nie etwas gehört von Taylor-reihen und bin mir auch sicher, das wir es nicht so rechnen sollten. Gibt es noch eine andere möglichkeit? Und wäre es möglich das an dem Beispiel zu machen? gruß, tiemo

Bezug
                        
Bezug
lineare Annäherung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:04 Di 29.09.2009
Autor: schachuzipus

Hallo toteitote,

> Hallo, Lothar, ich habe noch nie etwas gehört von
> Taylor-reihen und bin mir auch sicher, das wir es nicht so
> rechnen sollten. Gibt es noch eine andere möglichkeit? Und
> wäre es möglich das an dem Beispiel zu machen? gruß,
> tiemo

Nun, das Taylorpolynom der Ordnung 1 von [mm] $f(x)=\frac{1}{1+x}$ [/mm] in [mm] $x_0=0$ [/mm] entspricht genau der Tangente(ngleichung) von $f$ in [mm] $x_0=0$ [/mm]

Bestimme also die Gleichung der Tangente an den Graphen von $f$ an der Stelle [mm] $x_0=0$ [/mm]


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de