www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - lineare Beschränktheit
lineare Beschränktheit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Beschränktheit: Tipp
Status: (Frage) beantwortet Status 
Datum: 08:01 Mi 19.09.2012
Autor: judithlein

Hallo,

ich habe eine Frage zur linearen Beschränktheit:

Die Abbildung F: [mm] Ix\IR^{n} \to \IR^{n} [/mm] heißt linear beschränkt, wenn es stetige Funktionen a,b: I [mm] \to [0,\infty) [/mm] derart gibt, so dass
[mm] \parallel F(x,Y)\parallel \le a(x)*\parallel [/mm] Y [mm] \parallel+b(x) [/mm] für alle x [mm] \in [/mm] I, Y [mm] \in \IR^{n} [/mm]

Was sagt mir das für ein Y? Gilt die lineare Beschränktheit automatisch, wenn Y Lipschitz-stetig ist?

DANKE!

Gruß

        
Bezug
lineare Beschränktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:13 Mi 19.09.2012
Autor: fred97


> Hallo,
>  
> ich habe eine Frage zur linearen Beschränktheit:
>  
> Die Abbildung F: [mm]Ix\IR^{n} \to \IR^{n}[/mm] heißt linear
> beschränkt, wenn es stetige Funktionen a,b: I [mm]\to [0,\infty)[/mm]
> derart gibt, so dass
>  [mm]\parallel F(x,Y)\parallel \le a(x)*\parallel[/mm] Y
> [mm]\parallel+b(x)[/mm] für alle x [mm]\in[/mm] I, Y [mm]\in \IR^{n}[/mm]
>  
> Was sagt mir das für ein Y?

????  Obige Ungl. soll für alle x [mm] \in [/mm] I und alle Y [mm] \in \IR^n [/mm] gelten.


>  Gilt die lineare
> Beschränktheit automatisch, wenn Y Lipschitz-stetig ist?

?????   Y ist keine Funktion, sondern ein Element des [mm] \IR^n. [/mm]

FRED

>  
> DANKE!
>  
> Gruß


Bezug
                
Bezug
lineare Beschränktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:24 Mi 19.09.2012
Autor: judithlein


> > Hallo,
>  >  
> > ich habe eine Frage zur linearen Beschränktheit:
>  >  
> > Die Abbildung F: [mm]Ix\IR^{n} \to \IR^{n}[/mm] heißt linear
> > beschränkt, wenn es stetige Funktionen a,b: I [mm]\to [0,\infty)[/mm]
> > derart gibt, so dass
>  >  [mm]\parallel F(x,Y)\parallel \le a(x)*\parallel[/mm] Y
> > [mm]\parallel+b(x)[/mm] für alle x [mm]\in[/mm] I, Y [mm]\in \IR^{n}[/mm]
>  >  
> > Was sagt mir das für ein Y?
>  
> ????  Obige Ungl. soll für alle x [mm]\in[/mm] I und alle Y [mm]\in \IR^n[/mm]
> gelten.
>  
>
> >  Gilt die lineare

> > Beschränktheit automatisch, wenn Y Lipschitz-stetig ist?
>  
> ?????   Y ist keine Funktion, sondern ein Element des
> [mm]\IR^n.[/mm]

Sorry, ich meinte, ob die lineare Beschränktheit automatisch gilt, wenn F(x,Y) Lipschitz-stetig ist ?

>  
> FRED
>  >  
> > DANKE!
>  >  
> > Gruß
>  


Bezug
                        
Bezug
lineare Beschränktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:45 Mi 19.09.2012
Autor: fred97


> > > Hallo,
>  >  >  
> > > ich habe eine Frage zur linearen Beschränktheit:
>  >  >  
> > > Die Abbildung F: [mm]Ix\IR^{n} \to \IR^{n}[/mm] heißt linear
> > > beschränkt, wenn es stetige Funktionen a,b: I [mm]\to [0,\infty)[/mm]
> > > derart gibt, so dass
>  >  >  [mm]\parallel F(x,Y)\parallel \le a(x)*\parallel[/mm] Y
> > > [mm]\parallel+b(x)[/mm] für alle x [mm]\in[/mm] I, Y [mm]\in \IR^{n}[/mm]
>  >  >  
> > > Was sagt mir das für ein Y?
>  >  
> > ????  Obige Ungl. soll für alle x [mm]\in[/mm] I und alle Y [mm]\in \IR^n[/mm]
> > gelten.
>  >  
> >
> > >  Gilt die lineare

> > > Beschränktheit automatisch, wenn Y Lipschitz-stetig ist?
>  >  
> > ?????   Y ist keine Funktion, sondern ein Element des
> > [mm]\IR^n.[/mm]
>  
> Sorry, ich meinte, ob die lineare Beschränktheit
> automatisch gilt, wenn F(x,Y) Lipschitz-stetig ist ?

Nein. Nimm n=1 , [mm] I=\IR [/mm] und

              [mm] F(x,y)=x^2. [/mm]

F ist linear beschränkt (warum ?)

F ist nicht Lipschitzstetig (warum ?)

FRED

>  
> >  

> > FRED
>  >  >  
> > > DANKE!
>  >  >  
> > > Gruß
> >  

>  


Bezug
                                
Bezug
lineare Beschränktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:10 Do 20.09.2012
Autor: judithlein


> > > > Hallo,
>  >  >  >  
> > > > ich habe eine Frage zur linearen Beschränktheit:
>  >  >  >  
> > > > Die Abbildung F: [mm]Ix\IR^{n} \to \IR^{n}[/mm] heißt linear
> > > > beschränkt, wenn es stetige Funktionen a,b: I [mm]\to [0,\infty)[/mm]
> > > > derart gibt, so dass
>  >  >  >  [mm]\parallel F(x,Y)\parallel \le a(x)*\parallel[/mm] Y
> > > > [mm]\parallel+b(x)[/mm] für alle x [mm]\in[/mm] I, Y [mm]\in \IR^{n}[/mm]
>  >  >

>  >  
> > > > Was sagt mir das für ein Y?
>  >  >  
> > > ????  Obige Ungl. soll für alle x [mm]\in[/mm] I und alle Y [mm]\in \IR^n[/mm]
> > > gelten.
>  >  >  
> > >
> > > >  Gilt die lineare

> > > > Beschränktheit automatisch, wenn Y Lipschitz-stetig ist?
>  >  >  
> > > ?????   Y ist keine Funktion, sondern ein Element des
> > > [mm]\IR^n.[/mm]
>  >  
> > Sorry, ich meinte, ob die lineare Beschränktheit
> > automatisch gilt, wenn F(x,Y) Lipschitz-stetig ist ?
>  
> Nein. Nimm n=1 , [mm]I=\IR[/mm] und
>
> [mm]F(x,y)=x^2.[/mm]
>  
> F ist linear beschränkt (warum ?)

Da [mm] a(x)=x^2 [/mm] ist ?

>  
> F ist nicht Lipschitzstetig (warum ?)

Ist es nicht auf kompakten Intervallen Lipschitz-stetig?

>  
> FRED
>  >  
> > >  

> > > FRED
>  >  >  >  
> > > > DANKE!
>  >  >  >  
> > > > Gruß
> > >  

> >  

>  


Bezug
                                        
Bezug
lineare Beschränktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Do 20.09.2012
Autor: fred97


> > > > > Hallo,
>  >  >  >  >  
> > > > > ich habe eine Frage zur linearen Beschränktheit:
>  >  >  >  >  
> > > > > Die Abbildung F: [mm]Ix\IR^{n} \to \IR^{n}[/mm] heißt linear
> > > > > beschränkt, wenn es stetige Funktionen a,b: I [mm]\to [0,\infty)[/mm]
> > > > > derart gibt, so dass
>  >  >  >  >  [mm]\parallel F(x,Y)\parallel \le a(x)*\parallel[/mm]
> Y
> > > > > [mm]\parallel+b(x)[/mm] für alle x [mm]\in[/mm] I, Y [mm]\in \IR^{n}[/mm]
>  >  
> >  >

> >  >  

> > > > > Was sagt mir das für ein Y?
>  >  >  >  
> > > > ????  Obige Ungl. soll für alle x [mm]\in[/mm] I und alle Y [mm]\in \IR^n[/mm]
> > > > gelten.
>  >  >  >  
> > > >
> > > > >  Gilt die lineare

> > > > > Beschränktheit automatisch, wenn Y Lipschitz-stetig ist?
>  >  >  >  
> > > > ?????   Y ist keine Funktion, sondern ein Element des
> > > > [mm]\IR^n.[/mm]
>  >  >  
> > > Sorry, ich meinte, ob die lineare Beschränktheit
> > > automatisch gilt, wenn F(x,Y) Lipschitz-stetig ist ?
>  >  
> > Nein. Nimm n=1 , [mm]I=\IR[/mm] und
> >
> > [mm]F(x,y)=x^2.[/mm]
>  >  
> > F ist linear beschränkt (warum ?)
>  Da [mm]a(x)=x^2[/mm] ist ?

Nein. [mm] a(x)\equiv [/mm] = und [mm] b(x)=x^2 [/mm]


>  >  
> > F ist nicht Lipschitzstetig (warum ?)
>  Ist es nicht auf kompakten Intervallen Lipschitz-stetig?

Ist I ein kompaktes Intervall (beschränkt reicht auch), so ist [mm]F(x,y)=x^2[/mm] auf I x [mm] \IR [/mm] Lipschitzstetig.

(warum ?)

Ist I aber unbeschränkt, so ist F auf  auf I x [mm] \IR [/mm] nicht Lipschitzstetig.

(warum ?)

FRED

>  >  
> > FRED
>  >  >  
> > > >  

> > > > FRED
>  >  >  >  >  
> > > > > DANKE!
>  >  >  >  >  
> > > > > Gruß
> > > >  

> > >  

> >  

>  


Bezug
                                                
Bezug
lineare Beschränktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:23 Do 20.09.2012
Autor: judithlein


> > > > > > Hallo,
>  >  >  >  >  >  
> > > > > > ich habe eine Frage zur linearen Beschränktheit:
>  >  >  >  >  >  
> > > > > > Die Abbildung F: [mm]Ix\IR^{n} \to \IR^{n}[/mm] heißt linear
> > > > > > beschränkt, wenn es stetige Funktionen a,b: I [mm]\to [0,\infty)[/mm]
> > > > > > derart gibt, so dass
>  >  >  >  >  >  [mm]\parallel F(x,Y)\parallel \le a(x)*\parallel[/mm]
> > Y
> > > > > > [mm]\parallel+b(x)[/mm] für alle x [mm]\in[/mm] I, Y [mm]\in \IR^{n}[/mm]
>  
> >  >  

> > >  >

> > >  >  

> > > > > > Was sagt mir das für ein Y?
>  >  >  >  >  
> > > > > ????  Obige Ungl. soll für alle x [mm]\in[/mm] I und alle Y [mm]\in \IR^n[/mm]
> > > > > gelten.
>  >  >  >  >  
> > > > >
> > > > > >  Gilt die lineare

> > > > > > Beschränktheit automatisch, wenn Y Lipschitz-stetig ist?
>  >  >  >  >  
> > > > > ?????   Y ist keine Funktion, sondern ein Element des
> > > > > [mm]\IR^n.[/mm]
>  >  >  >  
> > > > Sorry, ich meinte, ob die lineare Beschränktheit
> > > > automatisch gilt, wenn F(x,Y) Lipschitz-stetig ist ?
>  >  >  
> > > Nein. Nimm n=1 , [mm]I=\IR[/mm] und
> > >
> > > [mm]F(x,y)=x^2.[/mm]
>  >  >  
> > > F ist linear beschränkt (warum ?)
>  >  Da [mm]a(x)=x^2[/mm] ist ?
>  
> Nein. [mm]a(x)\equiv[/mm] = und [mm]b(x)=x^2[/mm]
>  
>
> >  >  

> > > F ist nicht Lipschitzstetig (warum ?)
>  >  Ist es nicht auf kompakten Intervallen
> Lipschitz-stetig?
>  
> Ist I ein kompaktes Intervall (beschränkt reicht auch), so
> ist [mm]F(x,y)=x^2[/mm] auf I x [mm]\IR[/mm] Lipschitzstetig.
>  
> (warum ?)

Da [mm] x^2 [/mm] auf einem beschränkten Intervall ein Maximum annimmt?

>  
> Ist I aber unbeschränkt, so ist F auf  auf I x [mm]\IR[/mm] nicht
> Lipschitzstetig.
>  
> (warum ?)

Da man hier das Maximum nicht bestimmen kann und somit die Lipschitz-Konstante keine Konstante wäre. ?

>  
> FRED
>  >  >  
> > > FRED
>  >  >  >  
> > > > >  

> > > > > FRED
>  >  >  >  >  >  
> > > > > > DANKE!
>  >  >  >  >  >  
> > > > > > Gruß
> > > > >  

> > > >  

> > >  

> >  

>  


Bezug
                                                        
Bezug
lineare Beschränktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Do 20.09.2012
Autor: fred97


> > > > > > > Hallo,
>  >  >  >  >  >  >  
> > > > > > > ich habe eine Frage zur linearen Beschränktheit:
>  >  >  >  >  >  >  
> > > > > > > Die Abbildung F: [mm]Ix\IR^{n} \to \IR^{n}[/mm] heißt linear
> > > > > > > beschränkt, wenn es stetige Funktionen a,b: I [mm]\to [0,\infty)[/mm]
> > > > > > > derart gibt, so dass
>  >  >  >  >  >  >  [mm]\parallel F(x,Y)\parallel \le a(x)*\parallel[/mm]
> > > Y
> > > > > > > [mm]\parallel+b(x)[/mm] für alle x [mm]\in[/mm] I, Y [mm]\in \IR^{n}[/mm]
>  
> >  

> > >  >  

> > > >  >

> > > >  >  

> > > > > > > Was sagt mir das für ein Y?
>  >  >  >  >  >  
> > > > > > ????  Obige Ungl. soll für alle x [mm]\in[/mm] I und alle Y [mm]\in \IR^n[/mm]
> > > > > > gelten.
>  >  >  >  >  >  
> > > > > >
> > > > > > >  Gilt die lineare

> > > > > > > Beschränktheit automatisch, wenn Y Lipschitz-stetig ist?
>  >  >  >  >  >  
> > > > > > ?????   Y ist keine Funktion, sondern ein Element des
> > > > > > [mm]\IR^n.[/mm]
>  >  >  >  >  
> > > > > Sorry, ich meinte, ob die lineare Beschränktheit
> > > > > automatisch gilt, wenn F(x,Y) Lipschitz-stetig ist ?
>  >  >  >  
> > > > Nein. Nimm n=1 , [mm]I=\IR[/mm] und
> > > >
> > > > [mm]F(x,y)=x^2.[/mm]
>  >  >  >  
> > > > F ist linear beschränkt (warum ?)
>  >  >  Da [mm]a(x)=x^2[/mm] ist ?
>  >  
> > Nein. [mm]a(x)\equiv[/mm] = und [mm]b(x)=x^2[/mm]
>  >  
> >
> > >  >  

> > > > F ist nicht Lipschitzstetig (warum ?)
>  >  >  Ist es nicht auf kompakten Intervallen
> > Lipschitz-stetig?
>  >  
> > Ist I ein kompaktes Intervall (beschränkt reicht auch), so
> > ist [mm]F(x,y)=x^2[/mm] auf I x [mm]\IR[/mm] Lipschitzstetig.
>  >  
> > (warum ?)
>  Da [mm]x^2[/mm] auf einem beschränkten Intervall ein Maximum
> annimmt?

Unfug ! Hat denn [mm] x^2 [/mm] auf (0,1) ein Maximum ?

Sei I beschränkt, es gibt also ein c>0 mit |x| [mm] \le [/mm] c für alle x in I.

Dann haben wir für (x,y),(a,b) [mm] \in [/mm] i x [mm] \IR: [/mm]

  $ |F(x,y)-F(a,b)|= [mm] |x^2-a^2|=|x+a|*|x-a| \le [/mm] (|x|+|a|)|x-a| [mm] \le [/mm] 2c|x-a|$

>  >  
> > Ist I aber unbeschränkt, so ist F auf  auf I x [mm]\IR[/mm] nicht
> > Lipschitzstetig.
>  >  
> > (warum ?)
>  Da man hier das Maximum nicht bestimmen kann und somit die
> Lipschitz-Konstante keine Konstante wäre. ?

Unfug !

Sei I unbeschränkt (etwa nach oben unbeschränkt, nach unten gehts genauso). Nimm mal an F sei auf I x [mm] \IR [/mm] Lip.- stetig. Dann gibt es ein L [mm] \ge [/mm] 0 mit:

     (*)  [mm] |x^2-a^2| \le [/mm] L|x-a|  für alle x,a [mm] \in [/mm] I.

Sind nun x,a [mm] \in [/mm] I und x [mm] \ne [/mm] a, so folgt aus (*):

      (**)      |x+a| [mm] \le [/mm] L

Ist nun x [mm] \in [/mm] I und x > 0, so wähle a=2x, so folgt aus (**):

               3|x| [mm] \le [/mm] L.

Kann das für alle x [mm] \in [/mm] I mit x [mm] \ne [/mm] 0 richtig sein ? Nein ! Warum ?

FRED

>  >  
> > FRED
>  >  >  >  
> > > > FRED
>  >  >  >  >  
> > > > > >  

> > > > > > FRED
>  >  >  >  >  >  >  
> > > > > > > DANKE!
>  >  >  >  >  >  >  
> > > > > > > Gruß
> > > > > >  

> > > > >  

> > > >  

> > >  

> >  

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de