www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - lineare Mannigfaltigkeiten
lineare Mannigfaltigkeiten < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Mannigfaltigkeiten: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:54 Fr 09.01.2009
Autor: DarkCell

Aufgabe
Man überprüfe, ob die folgenden Mengen lineare Mannigfaltigkeiten in den angegebenen Vektorräumen sind.

f) [mm] \{ p \in \produkt_{}^{}_{n} | p^{2}(0) = 1 \} [/mm] in V = [mm] \produkt_{}^{}_{n} [/mm]

[mm] h)\{ \pmat{ 1+t & t+s & 2 \\ -1 & t-s & 2 \\ 6-s & s & t } | s,t \in \IR \} [/mm] in [mm] \IR^{3x3} [/mm]

Wir haben in der Anleitung zur Bearbeitung derartiger Aufgaben ein s.g. Vier-Punkte-Programm bekommen:
W ist die Menge der linearen Mannigfaltigkeit
1) Testen ob W  [mm] \subset [/mm] V
2) ob es überhaupt ein Element w [mm] \in [/mm] W gibt
3) ein v [mm] \in [/mm] W zu wählen für
4) zu testen ob [mm] U=\{w-v | \forall w \in W \} [/mm] ein Untervektorraum ist.

Leider haben wir nicht gesagt ob es sich hierbei um ein Untervektorraum von W oder von V handeln soll.
Das ist nämlich mein Problem bei Aufgabenteil f. Die ersten drei Bedingungen kann ich wunderbar abarbeiten nur bei dem Untervektorraum weiß ich nicht weiter.
Ich kann ja als Beispiel für v den Polynom [mm] v=p_{1}(x)=1 [/mm] nehmen. Dieser liegt ja offensichtlich in W und für w als Beispiel [mm] w=p_{2}(x)=3x+1. [/mm] Dieses Polynom liegt genauso in W, die Different beider Polynome wäre ja das Polynom [mm] w-v=p_{3}(x)=3x [/mm] . Dieses Polynom ist aber kein Untervektorraum von W aber von V.
Handelt es sich nun um eine lineare Mannigfaltigkeit oder nicht?

Und bei h wär ich über einen Ansatz froh. Bekommen Matrizen erst richtig im nächsten Kapitel aber unser Prof rechnet schonmal gerne mit ihnen, weiß überhaupt nicht wie ich an der Matrix diese Bedingungen testen kann.

Danke schonmal im Vorraus

        
Bezug
lineare Mannigfaltigkeiten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 14.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de