www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - lineare Substitution
lineare Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Mo 04.02.2008
Autor: Teenie88w

[mm] \integral_{1}^{2}{(\wurzel{6-3x})^{-1} dx} [/mm]

wie geht hier die Stammfunktion???


[mm] \bruch{5}{(3-2x)^2} [/mm]

[mm] F(x)=\bruch{5}{3}-2x+k [/mm] --> stimmt das???



        
Bezug
lineare Substitution: Korrektur + Hinweis
Status: (Antwort) fertig Status 
Datum: 16:56 Mo 04.02.2008
Autor: Roadrunner

Hallo teenie!


> [mm]\integral_{1}^{2}{f(\wurzel{6-3x})^-1 dx}[/mm]
>  
> wie geht hier die Stammfunktion???

Substituiere hier $z \ := \ 6-3*x$ und forme anschließend um:
[mm] $$\bruch{1}{\wurzel{z}} [/mm] \ = \ [mm] z^{-\bruch{1}{2}}$$ [/mm]
Dann kann man mittels MBPotenzregel integrieren.

  

> [mm]\bruch{5}{(3-2x)^2}[/mm]
>  
> F(x)= [mm]\bruch{5}{3}-2x[/mm] +k--> stimmt das???

[notok] Es gilt ja: [mm] $\bruch{5}{(3-2x)^2} [/mm] \ = \ [mm] 5*(3-2x)^{-2}$ [/mm] .
Auch hier erst die Klammer substituieren und dann die MBPotenzregel verwenden.


Gruß vom
Roadrunner


Bezug
                
Bezug
lineare Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Mo 04.02.2008
Autor: Teenie88w

das heisst dann (1/3)* (6-3x)^-1/2 ???

abe rich glaub,da fehlt noch was


Bezug
                        
Bezug
lineare Substitution: Potenzregel
Status: (Antwort) fertig Status 
Datum: 17:20 Mo 04.02.2008
Autor: Roadrunner

Hallo teenie!


Du musst doch auch hier noch zum Integrieren die MBPotenzregel anwenden, indem Du den Exponenten um 1 erhöhst und dann durch den neuen Exponenten teilst.


Gruß vom
Roadrunner


Bezug
                                
Bezug
lineare Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Mo 04.02.2008
Autor: Teenie88w

(1/3)*(6-3x)^-1/(-1)???

Bezug
                                        
Bezug
lineare Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Mo 04.02.2008
Autor: Teenie88w

ich weiss -1 kann es auch nicht sein..was ist es denn daNN???

Bezug
                                        
Bezug
lineare Substitution: rechnen!
Status: (Antwort) fertig Status 
Datum: 17:28 Mo 04.02.2008
Autor: Roadrunner

Hallo teenie!


Vielleicht solltsts du Dich mal auf eine Aufgabe konzentrieren und diese richtig rechnen, bevor Du Dich an die nächste machst ...


Da wir hier in der Klammer [mm] $\red{-} [/mm] \ 3*x$ stehen haben, muss der Faktor vor der Stammfunktion auch [mm] $\bruch{1}{\red{-} \ 3} [/mm] \ = \ [mm] \red{-}\bruch{1}{3}$ [/mm] lauten.

Und welche Zahl ist um genau 1 größer als [mm] $-\bruch{1}{2} [/mm] \ = \ -0.5$ ??


Gruß vom
Roadrunner


Bezug
                                                
Bezug
lineare Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Mo 04.02.2008
Autor: Teenie88w

+ 0.5??

Bezug
                                                        
Bezug
lineare Substitution: richtig
Status: (Antwort) fertig Status 
Datum: 17:35 Mo 04.02.2008
Autor: Roadrunner

Hallo teenie!


[ok]


Gruß vom
Roadrunner


Bezug
                                                                
Bezug
lineare Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Mo 04.02.2008
Autor: Teenie88w

[mm] -\bruch{1}{3}* (6-3*2)^0,5/(0,5) [/mm] -(- [mm] \bruch{1}{3})* (6-3*1)^0,5/(0,5) [/mm]

ist [mm] \approx [/mm] 1,54 richtig???

Bezug
                                                                        
Bezug
lineare Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Mo 04.02.2008
Autor: MathePower

Hallo Teenie,

> [mm]-\bruch{1}{3}* (6-3*2)^0,5/(0,5)[/mm] -(- [mm]\bruch{1}{3})* (6-3*1)^0,5/(0,5)[/mm]
>  
> ist [mm]\approx[/mm] 1,54 richtig???

Stimmt nicht ganz.

[mm]\bruch{1}{3}*(6-3*1)^{0,5}/(0,5)=\bruch{2*\wurzel{3}}{3}\approx 1,154[/mm]

Gruß
MathePower

Bezug
                                                                                
Bezug
lineare Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:12 Mo 04.02.2008
Autor: Teenie88w

Dankeschön.. Hatte mich auch nur vertippt...;-)

Bezug
        
Bezug
lineare Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Mo 04.02.2008
Autor: Teenie88w

[mm] \bruch{5}{(3-2x)^2} [/mm]

umformung: (3-2x)^-2
was mache ich mit der fünf ?? (1/5) davor oder wie

Vielen Dank im Vorraus

Bezug
                
Bezug
lineare Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Mo 04.02.2008
Autor: abakus


> [mm]\bruch{5}{(3-2x)^2}[/mm]
>  
> umformung: (3-2x)^-2
>  was mache ich mit der fünf ?? (1/5) davor oder wie
>  
> Vielen Dank im Vorraus

Wieso 1/5 ???

> [mm]\bruch{5}{(3-2x)^2}= 5*\bruch{1}{(3-2x)^2}[/mm]

Bezug
                        
Bezug
lineare Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Mo 04.02.2008
Autor: Teenie88w

also 5* (3-2x)^(-2)???

Bezug
                                
Bezug
lineare Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Mo 04.02.2008
Autor: MathePower

Hallo Teenie,

> also 5* (3-2x)^(-2)???

Ja.

Gruß
MathePower

Bezug
                                        
Bezug
lineare Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Mo 04.02.2008
Autor: Teenie88w

(2,5*(3-0)^(-1)/(-1)) -(2,5*(3-2*(-1))^(-1)/(-1)

ich habe dafür - 1/3 heraus..bitte nachschauen

Bezug
                                                
Bezug
lineare Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Mo 04.02.2008
Autor: MathePower

Hallo Teenie,

> (2,5*(3-0)^(-1)/(-1)) -(2,5*(3-2*(-1))^(-1)/(-1)
>  
> ich habe dafür - 1/3 heraus..bitte nachschauen

[ok]

Gruß
MathePower.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de