www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - lineare beschränkte Operatoren
lineare beschränkte Operatoren < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare beschränkte Operatoren: Unklarheit
Status: (Frage) beantwortet Status 
Datum: 16:05 Mi 06.11.2013
Autor: clemenum

Aufgabe
Es sei [mm] $T_{\alpha}$ [/mm] eine Folge von linearen, beschränkten Operatoren, welche punktweise konvergieren. Also ist die Definition [mm] $T_0(f):=\lim_{\alpha }T_{\alpha}(f) [/mm]  $ sinnvoll.
Man zeige, dass dann [mm] $T_0$ [/mm] selbst wieder eine lineare Abbildung ist.

Frage:

Mein Problem mit der Aufgabe: Ich erkenne leider nicht wie ich hier zeigen soll, dass gilt: [mm] $T_0(f_1 [/mm] + [mm] f_2)= T_0(f_1) [/mm] + [mm] T_0(f_2),$ [/mm] also  
[mm] $\lim_{\alpha} T_{\alpha}(f_1 [/mm] + [mm] f_2) [/mm] = [mm] \lim T_{\alpha} (f_1) [/mm] + [mm] \lim T_{\alpha} (f_2)$ [/mm]  
Kann mir da jemand einen Tipp geben?

Eine reine Interessens-Frage an Euch: Ist klar ob [mm] $T_0$ [/mm] auch eine beschränkte lineare Abbildung ist, wenn alle Operatoren [mm] $T\alpha$ [/mm] beschränkt sind? Wenn ja, wieso?  


        
Bezug
lineare beschränkte Operatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Mi 06.11.2013
Autor: fred97


> Es sei [mm]T_{\alpha}[/mm] eine Folge von linearen, beschränkten
> Operatoren,

Ist [mm] \alpha \in \IN [/mm] ? Oder ist [mm] (T_{\alpha}) [/mm] ein Netz ?


> welche punktweise konvergieren. Also ist die
> Definition [mm]T_0(f):=\lim_{\alpha }T_{\alpha}(f) [/mm] sinnvoll.
> Man zeige, dass dann [mm]T_0[/mm] selbst wieder eine lineare
> Abbildung ist.
>  Frage:
>
> Mein Problem mit der Aufgabe: Ich erkenne leider nicht wie
> ich hier zeigen soll, dass gilt: [mm]T_0(f_1 + f_2)= T_0(f_1) + T_0(f_2),[/mm]
> also  
> [mm]\lim_{\alpha} T_{\alpha}(f_1 + f_2) = \lim T_{\alpha} (f_1) + \lim T_{\alpha} (f_2)[/mm]
>  
> Kann mir da jemand einen Tipp geben?

[mm] T_0(f_1 [/mm] + [mm] f_2)= \lim T_{\alpha}(f_1+f_2)= \lim (T_{\alpha}(f_1)+T_{\alpha}(f_2))=\lim T_{\alpha}(f_1)+\lim T_{\alpha}(f_2)=T_0(f_1) +T_0( f_2) [/mm]


>
> Eine reine Interessens-Frage an Euch: Ist klar ob [mm]T_0[/mm] auch
> eine beschränkte lineare Abbildung ist, wenn alle
> Operatoren [mm]T\alpha[/mm] beschränkt sind?

Nein. Bei nur punktweiser Konvergenz muss der Grenzoperator nicht beschränkt sein.

Versuche ein Beispiel dafür zu finden.

FRED

> Wenn ja, wieso?  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de