www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - lineares homogenes DGL-System
lineares homogenes DGL-System < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineares homogenes DGL-System: linear, homogen, System, DGL
Status: (Frage) beantwortet Status 
Datum: 12:07 Sa 13.08.2011
Autor: paulpanter

Aufgabe
Guten Vormittag,

ich habe eine schnelle frage zu diesem DGL-System:

y' = [mm] \pmat{ 0 & 2 & 0 \\ 0 & 0 & 2 \\ -1 & 1 & 0 }*y [/mm]

Ich soll ein reelles Fundamentalsystem angeben.

Nun das Vorgehen ist relativ klar bis auf einen Punkt. Was mache ich mit komplexen Eigenwerten, Eigenvektoren.

In meinem Skript steht in so einem Fall tue man folgendes:

Ist [mm] \lambda_j [/mm] ein komplexer Eigenwert und es gilt [mm] \lambda_k [/mm] = [mm] \overline{\lambda_j} [/mm] wähle y(t) := [mm] Re(e^{\lambda_j*t}*b_j) [/mm] und y(t) := [mm] Im(e^{\lambda_j*t}*b_j) [/mm] als Elemente des Fundamentalsystems.

Die komplexen Eigenwerte und Eigenräume hier sind:

komplexe Eigenwerte: { 1-i ;  1+i }

Eigenräume:

zum Eigenwert 1-i:
   [mm] \vektor{2i \\ 1+i \\ 1} [/mm]

zum Eigenwert 1+i:
   [mm] \vektor{-2i \\ 1-i \\ 1} [/mm]

Kann mir jetzt einer erklären, wie man jetzt mit obiger Formel nun umgeht?

Mein Ansatz für den Realteil:

[mm] Re(e^{(1+i)*t}*\vektor{-2i \\ 1-i \\ 1}) [/mm] =
[mm] Re(e^{t+it}*\vektor{-2i \\ 1-i \\ 1}) [/mm] =
[mm] Re(e^{t}*e^{it}*\vektor{-2i \\ 1-i \\ 1}) [/mm] =
[mm] Re(e^{t}*(cos(t)+i*sin(t))*\vektor{-2i \\ 1-i \\ 1}) [/mm] =
[mm] Re(e^{t}*(cos(t)*\vektor{-2i \\ 1-i \\ 1}+i*sin(t)*\vektor{-2i \\ 1-i \\ 1})) [/mm]

Ich weiß nicht, wie man an den Realteil kommt :(

        
Bezug
lineares homogenes DGL-System: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Sa 13.08.2011
Autor: leduart

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo
$ e^{t}(\cdot{}(cos(t)+i\cdot{}sin(t))\cdot{}\vektor{-2i \\ 1-i \\ 1}) $ = e^{t}*\vektor{-2i*cost+2sint \\ cost+2sint+i*(-cost+sint \\ cost+isint})=
e^{t}*\vektor{2sint \\ cost+2sint \\ cost})+i*e^{t}*\vektor{-2cost\\sint-cost\\sint)
kannst du jetzt den Realteil finden und das Ergebnis dann als \vec{a}*sint+\vec{b}*cost   schreiben?
es geht auch indem du direkt die vektoren in ihrer Re und Im aufteilst.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de