www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - linksseitiger Signifikanztest
linksseitiger Signifikanztest < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linksseitiger Signifikanztest: Ermitteln von k
Status: (Frage) beantwortet Status 
Datum: 09:49 Di 03.05.2005
Autor: Do0107

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also, ich bin gerade dabei ein paar Stochastikaufgaben zu wiederholen und versuche gerade folgende Aufgabe zu lösen:

"Die Imbisskette will ihre Öffnungszeiten morgens verlängern, wenn in einer erneuten Umfrage mindestens 40 % aller Kunden am Morgenkauf interessiert sind. Es werden 200 zufällig ausgewählte Kunden zum Morgenkauf befragt...

Entwickeln Sie dazu einen Signifikanztext, bei dem die Wahrscheinlichkeit für die irrtümliche Ablehnung, verlängerter Öffnungszeiten höchstens 5 % beträgt und geben Sie die zugehörige Entscheidungsregel an."

So, also, folgenden ist klar (linksseitiger Signifikanztest):


1.) H0: p0 [mm] \ge [/mm] 0,4                                     H1: p1< 0,4

2.) X: Anzahl der Kunden, die am Morgenkauf interessiert sind
     X ~ B(200;0,4)

So und ab jetzt beginnen die Schwierigkeiten, denn laut der Lösung soll der Annahmebereich [mm] A=\{k+1...n\} [/mm] und der Ablehnungsbereich [mm] A'=\{0... k\} [/mm] sein.
Aber warum? Naja, ich versuche es jetzt mal mit diesem Ansatz weiter:


3.) [mm] A=\{k+1...n\} [/mm]  und          [mm] A'=\{0... k\} [/mm]

4.)
P (A'p0)  [mm] \le [/mm] 0,05
[mm] B(200;0,4\{0..k\}) \le [/mm] 0,05          [mm] \Rightarrow [/mm] da n*p=80= [mm] \mu [/mm] > 9 muss approximiert werden mit der globalen Näherung

(Phi) [mm] ((k+0,5-80)/(\wurzel{200*0,4*(1-0,4)} \le [/mm] 0,05

So, wenn ich nun aber in meine Tabelle der Standardnormalverteilung schaue, gibt es keinen Wert, der unter 0,05 liegt.
Also, denke ich mir, dass ich damit rechnen muss, dass der Wert negativ ist, also (Phi)(-x) = 1- (Phi)(x).
D.h.:


1 - (Phi) [mm] ((k+0,5-80)/(\wurzel{200*0,4*(1-0,4)} \le [/mm] 0,05

Nach einigen Umformungen hieße dies ja:

(Phi) [mm] ((k+0,5-80)/(\wurzel{200*0,4*(1-0,4)} \ge [/mm] 0,95

Und wenn ich nun nach einem Wert schaue, so stoße ich auf (Phi)(1,65) = 0,9505.

Rechne ich damit jetzt weiter komme ich aber auf ein k von ca. 91. In der Lösung steht aber 68. Was habe ich falsch gemacht?


Bis neulich!
Doreen












        
Bezug
linksseitiger Signifikanztest: Hilfe
Status: (Antwort) fertig Status 
Datum: 13:58 Di 03.05.2005
Autor: Zwerglein

Hi, Doreen,

> "Die Imbisskette will ihre Öffnungszeiten morgens
> verlängern, wenn in einer erneuten Umfrage mindestens 40 %
> aller Kunden am Morgenkauf interessiert sind. Es werden 200
> zufällig ausgewählte Kunden zum Morgenkauf befragt...
>
> Entwickeln Sie dazu einen Signifikanztext, bei dem die
> Wahrscheinlichkeit für die irrtümliche Ablehnung,
> verlängerter Öffnungszeiten höchstens 5 % beträgt und geben
> Sie die zugehörige Entscheidungsregel an."
>
> So, also, folgenden ist klar (linksseitiger
> Signifikanztest):
>  
> 1.) H0: p0 [mm]\ge[/mm] 0,4                                     H1:
> p1< 0,4
>  
> 2.) X: Anzahl der Kunden, die am Morgenkauf interessiert
> sind
>       X ~ B(200;0,4)
>  
> So und ab jetzt beginnen die Schwierigkeiten, denn laut der
> Lösung soll der Annahmebereich [mm]A=\{k+1...n\}[/mm] und der
> Ablehnungsbereich [mm]A'=\{0... k\}[/mm] sein.

Logo: Bei einem linksseitigen Signifikanztest liegt der Ablehnungsbereich immer LINKS vom Annahmebereich. (Übrigens ist natürlich n=200).

> 3.) [mm]A=\{k+1...n\}[/mm]  und          [mm]A'=\{0... k\}[/mm]
>  
> 4.)
> P (A'p0)  [mm]\le[/mm] 0,05
>  [mm]B(200;0,4\{0..k\}) \le[/mm] 0,05          [mm]\Rightarrow[/mm] da
> n*p=80= [mm]\mu[/mm] > 9 muss approximiert werden mit der globalen
> Näherung
>  
> (Phi) [mm]((k+0,5-80)/(\wurzel{200*0,4*(1-0,4)} \le[/mm] 0,05
>  
> So, wenn ich nun aber in meine Tabelle der
> Standardnormalverteilung schaue, gibt es keinen Wert, der
> unter 0,05 liegt.
> Also, denke ich mir, dass ich damit rechnen muss, dass der
> Wert negativ ist, also (Phi)(-x) = 1- (Phi)(x).
> D.h.:
>  
> 1 - (Phi) [mm]((k+0,5-80)/(\wurzel{200*0,4*(1-0,4)} \le[/mm] 0,05
>  
> Nach einigen Umformungen hieße dies ja:
>  
> (Phi) [mm]((k+0,5-80)/(\wurzel{200*0,4*(1-0,4)} \ge[/mm] 0,95

Falsch: k +0,5-80 (übrigens = k-79,5) ist ja negativ, also muss der zugehörige positive Wert gleich 79,5 - k sein!

> Und wenn ich nun nach einem Wert schaue, so stoße ich auf

> (Phi)(1,65) = 0,9505.
>
> Rechne ich damit jetzt weiter komme ich aber auf ein k von
> ca. 91. In der Lösung steht aber 68. Was habe ich falsch
> gemacht?

Siehe meine obige Bemerkung: Du hast mit k-79,5 [mm] \ge [/mm] 11,43 gerechnet. Richtig wäre jedoch: 79,5-k [mm] \ge [/mm] 11,43 sodass am Ende k [mm] \le [/mm] 68,07 steht.
Damit ist das maximale k gleich 68 und der Ablehnungsbereich ist {0; ...; 68}.

Aber nun hätt' ich mal 'ne Frage:
Warum nimmst Du überhaupt die Normalverteilung als Näherung? Die Binomialverteilung B(200;0,4) ist doch auch drin im Tafelwerk und damit ist der Aufwand immens kleiner!


Bezug
                
Bezug
linksseitiger Signifikanztest: Wieso 79,5-k?
Status: (Frage) beantwortet Status 
Datum: 15:24 Di 03.05.2005
Autor: Do0107

Also, ich habe die Näherung genutzt, weil ich mal in der Schule gelernt habe, dass wenn der Erwartungswert > 9 ist, man approximieren muss.

Aber stimmt schon, wenn ich in den Tabellen der summierten Binomialverteilung nachschlage, komme ich auch auf das Ergebnis.

Mich wundert aber immer noch dieses 79,5-k.... und warum man hier auf einmal nicht approximieren muss....

Bezug
                        
Bezug
linksseitiger Signifikanztest: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Di 03.05.2005
Autor: Zwerglein

Hi, Doreen,

> Also, ich habe die Näherung genutzt, weil ich mal in der
> Schule gelernt habe, dass wenn der Erwartungswert > 9 ist,
> man approximieren muss.

Man "MUSS" nur dann approximieren, wenn das Tafelwerk für die Binomialverteilung versagt. Wenn man jedoch die Wahl hat zwischen Binomialverteilung und Näherung, nimmt man natürlich die Binomialverteilung.
Die Sache mit "npq > 9" besagt nur, dass die Näherung in diesem Fall BRAUCHBAR ist, für npq < 9 sind die Werte meist sehr schlecht! Man "muss" aber nicht approximieren nur weil npq > 9 ist!

>  
> Aber stimmt schon, wenn ich in den Tabellen der summierten
> Binomialverteilung nachschlage, komme ich auch auf das
> Ergebnis.

Eben! Und das geht schneller als mit der Normalverteilung!

>  
> Mich wundert aber immer noch dieses 79,5-k.... und warum
> man hier auf einmal nicht approximieren muss....

Das "79,5-k" stammt doch aus Deiner Approximation:
Es ist der Zähler des Bruches im Argument von [mm] \Phi, [/mm]
nachdem man festgestellt hat, dass k - 80 + 0,5 = k - 79,5 NEGATIV ist und somit 79,5-k positiv.
Übrigens bräuchtest Du diese Umformung nicht, wenn Dein Tafelwerk auch sogenannte "Quantile" aufgelistet hätte (Schau mal nach am Ende der Tabelle zur Normalverteilung! Vielleicht hast Du's ja dort doch!).
Dort würdest Du finden: [mm] \Phi(-1,645) [/mm] = 0,05 und die Aufgabe wäre ohne die Umformung gelöst:

[mm] \bruch{k-79,5}{\wurzel{200*0,4*0,6}} \le [/mm] -1,645.

usw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de