www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - lipschitz-stetigkeit
lipschitz-stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lipschitz-stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Di 01.11.2011
Autor: PhiltheMan

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo liebes Forum. Ich habe eine Frage bezüglich einer Zusatzaufgabe die uns unser Mathe-Prof gestellt hat. Wir haben noch nicht viel dazu gemacht und ich stehe etwas auf dem Schlauch, würde die Aufgabe trotzdem gerne lösen.

Es geht um die Lipschitz-Stetigkeit: Es sei f:[a,b] [mm] \to\IR [/mm] eine stetig differenzierbare Funktion. Zu Zeigen, dass f auf [a,b] Lipschitz-stetig ist.

Als Hinweis ist noch gegeben das man die Dreiecksungleichung sowie Hauptsatz von Differential- und Integralrechnung verwenden soll.

Ich hab mir soweit gedacht: | f(x) -f(y)| [mm] \le [/mm] L|x-y| ist die Ausgangsgleichung. Ich habe gefunden das f genau dann lipschitzstetig ist, wenn ihre erste Ableitung beschränkt ist.

Wie zeige ich das ? Muss ich partiell jeweils ableiten und sehen das die Ableitung beschränkt ist?

Ich hoffe ihr könnt mir Tipps geben und mir helfen. Vielen Dank !
Liebe Grüße




        
Bezug
lipschitz-stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Di 01.11.2011
Autor: donquijote


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo liebes Forum. Ich habe eine Frage bezüglich einer
> Zusatzaufgabe die uns unser Mathe-Prof gestellt hat. Wir
> haben noch nicht viel dazu gemacht und ich stehe etwas auf
> dem Schlauch, würde die Aufgabe trotzdem gerne lösen.
>  
> Es geht um die Lipschitz-Stetigkeit: Es sei f:[a,b] [mm]\to\IR[/mm]
> eine stetig differenzierbare Funktion. Zu Zeigen, dass f
> auf [a,b] Lipschitz-stetig ist.
>
> Als Hinweis ist noch gegeben das man die
> Dreiecksungleichung sowie Hauptsatz von Differential- und
> Integralrechnung verwenden soll.
>
> Ich hab mir soweit gedacht: | f(x) -f(y)| [mm]\le[/mm] L|x-y| ist
> die Ausgangsgleichung. Ich habe gefunden das f genau dann
> lipschitzstetig ist, wenn ihre erste Ableitung beschränkt
> ist.

Der Ansatz ist schonmal der richtige.

>  
> Wie zeige ich das ? Muss ich partiell jeweils ableiten und
> sehen das die Ableitung beschränkt ist?

f' ist eine auf dem abgeschlossenen Intervall [a,b] stetige Funktion und als solche beschränkt.

>
> Ich hoffe ihr könnt mir Tipps geben und mir helfen. Vielen
> Dank !
>  Liebe Grüße
>
>
>  


Bezug
                
Bezug
lipschitz-stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Di 01.11.2011
Autor: PhiltheMan

Okay ! Also ich habe mir jetzt ein bisschen was aufgeschrieben und würde gerne wissen ob das richtig ist bzw. der richtige Weg.

Mit:

> f' ist eine auf dem abgeschlossenen Intervall [a,b] stetige
> Funktion und als solche beschränkt.


|f(x)-f(y)| = | f' |*|x-y| [mm] \le [/mm] L*|x-y|

Dann: [mm] \exists \varepsilon \in [/mm] [a,b]

[mm] \bruch{|f(x)-f(\varepsilon)|}{|x-\varepsilon|} \le [/mm] L

Daraus folgt das f lipschitz-stetig ist mit L als obere Schranke.
Kann man das so daraus folgern?




Bezug
                        
Bezug
lipschitz-stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Di 01.11.2011
Autor: donquijote


> Okay ! Also ich habe mir jetzt ein bisschen was
> aufgeschrieben und würde gerne wissen ob das richtig ist
> bzw. der richtige Weg.
>
> Mit:
>
> > f' ist eine auf dem abgeschlossenen Intervall [a,b] stetige
> > Funktion und als solche beschränkt.
>  
>
> |f(x)-f(y)| = | f' |*|x-y| [mm]\le[/mm] L*|x-y|

Das sollte man schon etwas genauer begründen, etwa so:
|f(y)-f(x)| = [mm] |\int_x^yf'(t)dt| \le \int_x^y|f'(t)|dt \le [/mm] L|x-y|, wenn gilt [mm] |f'(t)|\le [/mm] L für alle [mm] t\in[a,b] [/mm]

>  
> Dann: [mm]\exists \varepsilon \in[/mm] [a,b]
>
> [mm]\bruch{|f(x)-f(\varepsilon)|}{|x-\varepsilon|} \le[/mm] L

Wozu du das [mm] \varepsilon [/mm] jetzt noch brauchst, ist mit nicht klar. Die obere Ungleichung [mm] |f(y)-f(x)|\le [/mm] L|y-x| reicht doch eigentlich schon aus.

>  
> Daraus folgt das f lipschitz-stetig ist mit L als obere
> Schranke.
>  Kann man das so daraus folgern?
>
>
>  


Bezug
        
Bezug
lipschitz-stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:22 Mi 02.11.2011
Autor: fred97


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo liebes Forum. Ich habe eine Frage bezüglich einer
> Zusatzaufgabe die uns unser Mathe-Prof gestellt hat. Wir
> haben noch nicht viel dazu gemacht und ich stehe etwas auf
> dem Schlauch, würde die Aufgabe trotzdem gerne lösen.
>  
> Es geht um die Lipschitz-Stetigkeit: Es sei f:[a,b] [mm]\to\IR[/mm]
> eine stetig differenzierbare Funktion. Zu Zeigen, dass f
> auf [a,b] Lipschitz-stetig ist.
>
> Als Hinweis ist noch gegeben das man die
> Dreiecksungleichung sowie Hauptsatz von Differential- und
> Integralrechnung verwenden soll.

Der Mittelwertsatz reicht völlig:

f' ist stetig auf [a,b], also dort auch beschränkt. Somit gibt es ein L [mm] \ge [/mm] 0 mit:

                 |f'| [mm] \le [/mm] L auf  [a,b].

Zu x,y [mm] \in [/mm]  [a,b] gibt es ein [mm] \xi [/mm] zwischen x und y mit : [mm] f(x)-f(y)=f'(\xi)(x-y). [/mm]

Dann folgt: |f(x)-f(y)| [mm] \le [/mm] L|x-y|.

FRED

>
> Ich hab mir soweit gedacht: | f(x) -f(y)| [mm]\le[/mm] L|x-y| ist
> die Ausgangsgleichung. Ich habe gefunden das f genau dann
> lipschitzstetig ist, wenn ihre erste Ableitung beschränkt
> ist.
>  
> Wie zeige ich das ? Muss ich partiell jeweils ableiten und
> sehen das die Ableitung beschränkt ist?
>
> Ich hoffe ihr könnt mir Tipps geben und mir helfen. Vielen
> Dank !
>  Liebe Grüße
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de