www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - lipschitz x^{2/3} lokal global
lipschitz x^{2/3} lokal global < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lipschitz x^{2/3} lokal global: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:27 So 02.10.2011
Autor: kushkush

Aufgabe
4.

a) Ist die Funktion [mm] $f:\IR \rightarrow [0,\infty[, f(x)=x^{2/3}$ [/mm] lokal lipschitzstetig im Punkt [mm] $x_{0}=0$ [/mm] ?

b) Ist die Funktion aus a) global Lipschitzstetig auf [mm] $[1,\infty[$ [/mm] ?


Hallo,


a)

[mm] $f(x)=x^{2/3}$ [/mm] ist nicht lokal lipschitzstetig in [mm] $x_{0}$ [/mm] da in jeder offenen Umgebung von 0 gibt es für jedes L>0 ein [mm] $x_{i}$ [/mm] mit [mm] $1\ge L^{3/2}|x_{i}| \Rightarrow |f(x_{i})-f(0)| [/mm] = [mm] |x_{i}|^{3/2} \ge L|x_{i}|$ [/mm]


b) Nach dem Mittelwertsatz von Lagrange existieren [mm] $\xi,x,y \in \IR[1,\infty[: [/mm]

           $|f(x)-f(y)| = [mm] f'(\xi) [/mm] |x-y| [mm] \le |f'(\xi)||x-y| \le [/mm] M |x-y|$

Da die Ableitung beschränkt ist, ist [mm] $x^{2/3}$ [/mm] auf [mm] $[1,\infty[$ [/mm]  global lipschitzstetig.




Ist das so in Ordnung?



Bin für jegliche Hilfestellung sehr dankbar!!



Gruss
kushkush

        
Bezug
lipschitz x^{2/3} lokal global: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 So 02.10.2011
Autor: leduart

Hallo
a) hast du dich mit dem exponenten vertan, und ich denke es gehört 1 schritt wenigstens mehr dazu.
b) du solltest M für [mm] x\ge1 [/mm] angeben, nur sagen ist beschränkt, ohne es zu zeigen reicht nicht
Gruss leduart


Bezug
                
Bezug
lipschitz x^{2/3} lokal global: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 So 02.10.2011
Autor: kushkush

Hallo


a) Angenommen $f(x)= [mm] x^{2/3}$ [/mm] wäre in [mm] $x_{0}=0$ [/mm] lokal lipschitzstetig, dann müsste für jede offene Umgebung U von 0 für jedes $L>0$ gelten:

[mm] $|x^{2/3}-0| \le [/mm] L |x-0| [mm] \gdw |\frac{x^{2/3}}{x}| \le [/mm] L [mm] \gdw [/mm] 1 [mm] \le [/mm] L [mm] |x^{1/3}| [/mm] \  \ [mm] \forall [/mm] L>0, [mm] x_{ \in U}>0$ [/mm]

für x gegen 0 erhält man dann den Widerspruch [mm] $1\le [/mm] 0$, also ist [mm] $f(x)=x^{2/3}$ [/mm] in [mm] $x_{0}=0$ [/mm] nicht lokal lipschitzstetig.

b)

Nach dem Mittelwertsatz von Lagrange existieren [mm] $\xi,x,y \in \IR[1,\infty[: [/mm] $
         $f(x)= [mm] x^{2/3}$ [/mm]
         $ |f(x)-f(y)| = [mm] f'(\xi) [/mm] |x-y| [mm] \le |f'(\xi)||x-y| \le [/mm] M |x-y| $

mit $f'(x):= [mm] \frac{2}{3|x^{1/3}|} \Rightarrow M=\frac{2}{3} [/mm] \ [mm] \forall x\ge [/mm] 1$



So ok??


> Gruss leduart

Vielen Dank!!!



Gruss
kushkush




Bezug
                        
Bezug
lipschitz x^{2/3} lokal global: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 So 02.10.2011
Autor: leduart

Hallo kushkush
[ok][zustimm]
gruss leduart


Bezug
                                
Bezug
lipschitz x^{2/3} lokal global: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 So 02.10.2011
Autor: kushkush

Hallo leduart


> daumenhoch

Danke!!



Gruss
kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de