ln-Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:04 Mi 08.12.2004 | Autor: | Lunita |
Hallöchen! Ich hab mal nen paar Fragen zu nachstehender Aufgabe und ich hoffe,dass mir jemand helfen kann... Es geht um eine ln-Funktion... Mein Lieblingsthema... ;)
f(x)= [mm] (lnx)^2
[/mm]
a) Welche (von der x-Achse verschiedene) Ursprungsgerade berührt das Schaubild von f?Gib den Berührpunkt an.
b) g(x)=lnx ; Wo schneiden sich g(x) und f(x)
c) Die Schaubilder von f und g umschließen eine Fläche. Welche parallele zur y-Achse schneidet aus dieser Fläche eine Strecke maximaler Länge aus? Gib die maximale Streckenlänge an.
Lösungsansatz zu a: Der Punkt P(0/0) muss auf der Geraden mit der allgemeinen Formel y=m*x+b liegen und die Steigung des Graphen f(x) ist gleich der Steigung m der Geraden in dem Berührpunkt. Und um den Berührpunkt zu ermitteln setzt man die Gerade gleich f(x).
Dadurch dass der Punkt P auf der Geraden liegen soll ergibt sich für b=0.
Als nächstes ist f(x)=m,also 2*lnx/x = m. Die beiden Gleichungen gleichgesetzt ergeben m*x= [mm] (lnx)^2. [/mm] Für m kann man nun die erste Ableitung einsetzen und kommt so zu [mm] 2*lnx=(lnx)^2. [/mm] Und da liegt meine Frage,wie kann ich nun diese Gleichung nach x auflösen? Ich habe zwar zwei Ansätze,allerdings sind können diese nicht richtig sein.
Lösungsansatz zu b: Gleichsetzen beider Gleichungen,also: lnx= [mm] (lnx)^2
[/mm]
Auch hier hab ich das Problem mit dem Auflösen nach x. eine Lösung ist x=1,da 0= [mm] (lnx)^2-lnx; [/mm] wie komme ich jedoch auf den zweiten Schnittpunkt?
Lösungsansatz zu c: Man subtrahiert zuerst die untere Funktion von der oberen Funktion,also g(x)-f(x) und kommt so zu lnx- [mm] (lnx)^2. [/mm] Die Strecke maximaler Länge teilt den Flächeninhalt in zwei gleichgroße Hälften. Um jedoch den Flächeninhalt berechnen zu können,muss ich [mm] lnx-(lnx)^2 [/mm] integrieren und da liegt mein Problem,da ich nicht weiß,wie man das macht.
Ich wäre über eure Hilfe sehr dankbar. Vielen Dank schon einmal im Voraus. Und ich hoffe meine Ansätze sind nicht ganz so misslungen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:29 Mi 08.12.2004 | Autor: | Sigrid |
Hallo Lunita,
> Hallöchen! Ich hab mal nen paar Fragen zu nachstehender
> Aufgabe und ich hoffe,dass mir jemand helfen kann... Es
> geht um eine ln-Funktion... Mein Lieblingsthema... ;)
> f(x)= [mm](lnx)^2
[/mm]
> a) Welche (von der x-Achse verschiedene) Ursprungsgerade
> berührt das Schaubild von f?Gib den Berührpunkt an.
> b) g(x)=lnx ; Wo schneiden sich g(x) und f(x)
> c) Die Schaubilder von f und g umschließen eine Fläche.
> Welche parallele zur y-Achse schneidet aus dieser Fläche
> eine Strecke maximaler Länge aus? Gib die maximale
> Streckenlänge an.
> Lösungsansatz zu a: Der Punkt P(0/0) muss auf der Geraden
> mit der allgemeinen Formel y=m*x+b liegen und die Steigung
> des Graphen f(x) ist gleich der Steigung m der Geraden in
> dem Berührpunkt. Und um den Berührpunkt zu ermitteln setzt
> man die Gerade gleich f(x).
> Dadurch dass der Punkt P auf der Geraden liegen soll
> ergibt sich für b=0.
> Als nächstes ist f(x)=m,also 2*lnx/x = m. Die beiden
> Gleichungen gleichgesetzt ergeben m*x= [mm](lnx)^2.[/mm] Für m kann
> man nun die erste Ableitung einsetzen und kommt so zu
> [mm]2*lnx=(lnx)^2.[/mm] Und da liegt meine Frage,wie kann ich nun
> diese Gleichung nach x auflösen? Ich habe zwar zwei
> Ansätze,allerdings sind können diese nicht richtig sein.
Da hast du doch schon das meiste geschafft.
Es gilt:
[mm] 2 \cdot \ln x = (\ln x)^2 [/mm]
[mm] \gdw 2 \cdot \ln x - (\ln x)^2 = 0 [/mm]
[mm] \gdw \ln x (2 - \ln x) = 0 [/mm]
[mm] \gdw \ln x = 0 \vee 2 - \ln x = 0[/mm]
Die erste Gleichung liefert dir die x- Achse, die zweite liefert die gesuchte Lösung.
(Das Ausklammern liefert dir sehr oft Lösungen.)
> Lösungsansatz zu b: Gleichsetzen beider Gleichungen,also:
> lnx= [mm](lnx)^2
[/mm]
> Auch hier hab ich das Problem mit dem Auflösen nach x.
> eine Lösung ist x=1,da 0= [mm](lnx)^2-lnx;[/mm] wie komme ich
> jedoch auf den zweiten Schnittpunkt?
Hier kommst du mit dem Lösungsweg von a) weiter.
> Lösungsansatz zu c: Man subtrahiert zuerst die untere
> Funktion von der oberen Funktion,also g(x)-f(x) und kommt
> so zu lnx- [mm](lnx)^2.[/mm] Die Strecke maximaler Länge teilt den
> Flächeninhalt in zwei gleichgroße Hälften.
Wie kommst du darauf?
Ich würde so rechnen: Eine Parallele zur y-Achse hat die Gleichung x=a. Die Strecke, die von den Graphen ausgeschnitten wird, hat die Länge g(a) - f(a).
Dies ist also deine Zielfunktion, von der du das Maximum suchen musst.
Ich denke, mit diesen Hinweisen kommst du weiter. Wenn nicht, melde dich einfach noch einmal.
> Um jedoch den
> Flächeninhalt berechnen zu können,muss ich [mm]lnx-(lnx)^2[/mm]
> integrieren und da liegt mein Problem,da ich nicht weiß,wie
> man das macht.
Hier brauchtest du das Verfahren der partiellen Integration. Habt ihr das schon gehabt?
>
> Ich wäre über eure Hilfe sehr dankbar. Vielen Dank schon
> einmal im Voraus. Und ich hoffe meine Ansätze sind nicht
> ganz so misslungen.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>
Gruß
Sigrid
|
|
|
|