ln Funktionen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:26 Do 20.05.2010 | Autor: | Kubs |
bitte korrigieren^^
f(x)=ln(ln(x))
[mm] f'(x)=\bruch{1}{ln(x)} \* \bruch{1}{x}
[/mm]
[mm] f'(x)=\bruch{1}{ln(x)\*x}
[/mm]
[mm] f'(x)=(ln(x)\*x)^{-1}
[/mm]
[mm] f''(x)=-1(ln(x)\*x)^{-2} \* \bruch{1}{x} \* [/mm] x [mm] +ln(x)\*1
[/mm]
[mm] f''(x)=-1(ln(x)\*x)^{-2}+ln(x)
[/mm]
[mm] f(x)=ln(e^{x}+e^{-2})
[/mm]
f(x)=x-x
f(x)=0
[mm] f(x)=\bruch{1}{ln(x)}
[/mm]
[mm] f(x)=ln(x)^{-1}
[/mm]
f(x)=-2ln(x) [mm] \* \bruch{1}{x}
[/mm]
[mm] f''(x)=-\bruch{2}{x}\*\bruch{1}{x}-2ln(x)\*-x^{-2}
[/mm]
[mm] f''(x)=-\bruch{2}{x^{2}}+2ln(x)\*x^{-2}
[/mm]
[mm] f(x)=\wurzel[]{ln(x)}
[/mm]
f(x)= [mm] ln(x)^{\bruch{1}{2}}
[/mm]
[mm] f'(x)=\bruch{1}{2}ln(x)^{-\bruch{1}{2}}\*\bruch{1}{x}
[/mm]
[mm] f''(x)=-\bruch{1}{4}ln(x)^{-\bruch{3}{2}}\*\bruch{1}{x}\*\bruch{1}{x}+\bruch{1}{2}ln(x)^{-\bruch{1}{2}}\*-x^{-2}
[/mm]
[mm] f''(x)=-\bruch{1}{4}ln(x)^{-\bruch{3}{2}}\*\bruch{1}{x^{2}}+\bruch{1}{2}ln(x)^{-\bruch{1}{2}}\*-x^{-2}
[/mm]
[mm] f(x)=\wurzel[]{x}\*ln(x)
[/mm]
[mm] f(x)=x^{\bruch{1}{2}}\*ln(x)
[/mm]
[mm] f'(x)=x^{\bruch{1}{2}}\*\bruch{1}{x}+\bruch{1}{2}x^{-\bruch{1}{2}}\*ln(x)
[/mm]
[mm] f(x)=x^{3}\*ln(2x)
[/mm]
[mm] f'(x)=3x^{2}\*\bruch{1}{x}+x^{3}*\bruch{1}{x}
[/mm]
[mm] f'(x)=3x+x^{2}
[/mm]
f''(x)=3+2x
[mm] f(x)=(x+1)\*ln(x^{2}-1)
[/mm]
[mm] f'(x)=1\*\bruch{1}{x^{2}-1}\*2x+(x+1)\*ln(x^{2}-1)
[/mm]
[mm] f'(x)=\bruch{2}{x-1}+(x+1)\*ln(x^{2}-1)
[/mm]
[mm] f(x)=\bruch{x^{2}}{ln(x)}
[/mm]
[mm] f'(x)=\bruch{2x\*ln(x)-x^{2}*\bruch{1}{x}}{ln(x)^{2}}
[/mm]
[mm] f(x)=ln(\bruch{1+x}{1-x})
[/mm]
[mm] f'(x)=\bruch{1-x}{1+x}
[/mm]
[mm] f(x)=ln(\bruch{e^{x}}{1+e^{x}})
[/mm]
[mm] f(x)=\bruch{x}{1+x}
[/mm]
[mm] f'(x)=\bruch{1\*1+x-x\*1}{(1+x)^{2}}
[/mm]
[mm] f'(x)=\bruch{1+x}{(1+x)^{2}}
[/mm]
|
|
|