www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - log, Umformung
log, Umformung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

log, Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:05 Sa 07.01.2012
Autor: Lu-

Aufgabe
Vereinfache:
[mm] a^{\frac{log(log a)}{log a}} [/mm]

Hallo
[mm] a^x [/mm] := [mm] e^{x*log a} [/mm]


[mm] a^{log(log a) /log a} [/mm] = [mm] e^{(log(log a)/log a) *log a} [/mm] = [mm] e^{log(log a)} [/mm]

Bei der Umformung bin ich mir schon nicht sicher.

Vielen dank.,
lg

        
Bezug
log, Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Sa 07.01.2012
Autor: DerSpunk

Hi,

die Umformung ist korrekt. [mm]e^{log(log(a))}[/mm] kann man aber noch weiter vereinfachen (noch ein Schritt).

Beste Grüße
Spunk

Bezug
                
Bezug
log, Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:23 Sa 07.01.2012
Autor: Lu-

Aufgabe
[mm] \frac{x^{log_a y} }{y^{log_a x}} [/mm]

= log (a) ?

Ich hab noch eine zweite AUfgabe, hast du da einen Tipp, wie man da anfangen könnte?

Bezug
                        
Bezug
log, Umformung: soweit richtig
Status: (Antwort) fertig Status 
Datum: 00:37 Sa 07.01.2012
Autor: Loddar

Hallo Lu-!


>  = log (a) ?

[ok]


> [mm]\frac{x^{log_a y} }{y^{log_a x}}[/mm]

Es gilt z.B. für den Zähler:

[mm]\red{x}^{\log_a(y)} \ = \ \left[ \ \red{a^{\log_a(x)}} \right]^{\log_a(y)} \ = \ a^{\log_a(x)*\log_a(y)}[/mm]

Gleiche Umformung im Nenner und dann kürzen ...


Gruß
Loddar


Bezug
                                
Bezug
log, Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:55 Sa 07.01.2012
Autor: Lu-

Hallo ;)
> Es gilt z.B. für den Zähler:
>  
> [mm]\red{x}^{\log_a(y)} \ = \ \left[ \ \red{a^{\log_a(x)}} \right]^{\log_a(y)} \ = \ a^{\log_a(x)*\log_a(y)}[/mm]
>  
> Gleiche Umformung im Nenner und dann kürzen ...

okay. was dann schlussendlich 1 ergibt.

Meine letzte Übung:
[mm] \produkt_{j=1}^{n-1} {log}_{{a}_ j} (a_{j+1}) [/mm]

Was heißt der Logarithmus zur Basis [mm] a_1....a_{n-1} [/mm] ?

Liebe Grüße



Bezug
                                        
Bezug
log, Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Sa 07.01.2012
Autor: angela.h.b.


> Meine letzte Übung:
>  [mm]\produkt_{j=1}^{n-1} {log}_{{a}_ j} (a_{j+1})[/mm]

Hallo,

verwende hier die von Marcel in seiner Mitteilung genannte Gleichheit.

>  
> Was heißt der Logarithmus zur Basis [mm]a_1....a_{n-1}[/mm] ?

???

Meinst Du, was [mm] log_{a}b [/mm] bedeutet?

[mm] c=log_{a}b [/mm] <==> [mm] a^c=b [/mm]   ( <==> [mm] c=\bruch{ln(b)}{ln(a)} [/mm] )

LG Angela


Bezug
                                        
Bezug
log, Umformung: Produktsymbol
Status: (Antwort) fertig Status 
Datum: 16:11 Sa 07.01.2012
Autor: Marcel

Hallo,

> Hallo ;)
>  > Es gilt z.B. für den Zähler:

>  >  
> > [mm]\red{x}^{\log_a(y)} \ = \ \left[ \ \red{a^{\log_a(x)}} \right]^{\log_a(y)} \ = \ a^{\log_a(x)*\log_a(y)}[/mm]
>  
> >  

> > Gleiche Umformung im Nenner und dann kürzen ...
>  okay. was dann schlussendlich 1 ergibt.
>  
> Meine letzte Übung:
>  [mm]\produkt_{j=1}^{n-1} {log}_{{a}_ j} (a_{j+1})[/mm]
>  
> Was heißt der Logarithmus zur Basis [mm]a_1....a_{n-1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

?

Du interpretierst das Produktsymbol anscheinend falsch. Es wäre etwa
$$\log_{\produkt_{k=1}^{n-1}a_k}(x)=\log_{a_1*\cdot*a_{n-1}}}(x)$$
der Logarithmus von $x\,$ zur Basis $a_1*\ldots*a_{n-1}\,.$
(Da würdest Du halt als Basis das Ergebnis einer Multiplikation erhalten, etwa
$$\log_{1*2*3*4}(x)=\log_{24}(x)\,,$$
wo Du halt die Basis $24\,$ $(=1*2*3*4)\,$ hast.)

Oben steht aber:
$$\produkt_{j=1}^{n-1} {\log}_{{a}_ j} (a_{j+1})$$
und das ist nix anderes als
$$\log_{a_1}(a_2)*\log_{a_2}(a_3)*\log_{a_3}(a_4)*\ldots *\log_{a_{n-1}}(a_n)\,.$$

Benutze dann Angelas Hinweis, dann kürzt sich einiges weg und am Ende kann man dann wieder meinen Hinweis benutzen.

Wenn's unklar ist:
Schreib' Dir das ganze erstmal beispielsweise für $n=5\,,$ $a_1=2\,,$ $a_2=5\,,$ $a_3=7\,,$ $a_4=11$ und $a_5=15$ hin.

Gruß,
Marcel

Bezug
                        
Bezug
log, Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:32 Sa 07.01.2012
Autor: Marcel

Hallo,

> [mm]\frac{x^{log_a y} }{y^{log_a x}}[/mm]

mal nebenbei (zur Verdeutlichung schreibe ich [mm] $\ln$ [/mm] anstatt [mm] $\log$ [/mm] für den Logarithmus naturalis):
Hier könntest Du auch die Regel
[mm] $$\log_{a}(y)=\frac{\ln(y)}{\ln(a)}$$ [/mm]
benutzen.
(Und etwa [mm] $x=a^{\ln(x)/\ln(a)}$ [/mm] ...)

Gruß,
Marcel

Bezug
                                
Bezug
log, Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Sa 07.01.2012
Autor: quasimo

danke ;)
#denn das war auch einer meiner Bsp. ;)

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de