www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - maximales Volumen
maximales Volumen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

maximales Volumen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:32 Di 27.03.2007
Autor: Morph1

Aufgabe
Ermitteln Sie die Kantenlängen eines quaderförmigen Kastens mit maximalem Volumen, wenn dessen Oberfläche 64cm² betragen soll.

Hallo,
schreibe das erste mal in solch ein Forum, also falls Fehler in der Art des Aufbaus sind, bitt darauf hinweisen.

Was ich bisher gemacht habe:
geg:
A=64cm²
A=a*b
V=maximal
V=a*b*c

ges:
a, b, c

Lsg:
da A=64cm² -> V=64cm²*c

und nun bleib ich hängen,weil wenn ich ableite und gleich 0 setzte(F'(x)=0), wird der ganze Ausdruck ja falsch!?!
Oder muss ich mit der partiellen Integration arbeiten, aber eigentlich geht das bei Extremwertaufgaben doch um die Differentiation?
Naja auf jedenfall komme ich da nicht weiter.
Bitte um Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
maximales Volumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:01 Di 27.03.2007
Autor: Zwerglein

Hi, Morph,

> Ermitteln Sie die Kantenlängen eines quaderförmigen Kastens
> mit maximalem Volumen, wenn dessen Oberfläche 64cm²
> betragen soll.

Also wenn nichts weiter gegeben ist, dann ist die Aufgabe nur schwer rechnnerisch zu lösen, weil Du 3 Hilfsvariable hast, aber nur 1 Nebenbedingung; es bleiben also in jedem Fall 2 unabhängige Variable übrig. War nicht vielleicht noch so was wie eine "quadratische Grundfläche" oder so was gegeben?

Andererseits ist die Aufgabe rein durch Logik schnell gelöst, denn es ist ja bekannt, dass von allen Quadern mit gleicher Oberfläche der WÜRFEL das größte Volumen aufweist.

> Was ich bisher gemacht habe:
>  geg:
>  A=64cm²
>  A=a*b

Das ist falsch, denn die Oberfläche eines Quaders besteht aus ingesamt 6 Rechtecken, von denen jeweils 2 gegenüberliegende gleich groß sind.
Daher: 2ab + 2ac + 2bc = 64
Das könntest Du nun z.B. nach a auflösen, aber wie gesagt: Du hast dann immer noch b und c als Variable.

>  V=maximal
>  V=a*b*c
>  
> ges:
>  a, b, c

mfG!
Zwerglein

Bezug
                
Bezug
maximales Volumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Di 27.03.2007
Autor: Morph1

Ja genau. Jetzt komm ich weiter!
Ich bin die ganze Zeit von der Grundfläche ausgegangen, deswegen kamm ich nicht weiter!
Danke hat mir sehr geholfen!
Aber zu deiner Frage weiter war nichts gegeben! Das ganze läuft unter dem Thema "Anwendung der Differentialrechnung für Funktionen mehrerer Variablen" .

Bezug
                        
Bezug
maximales Volumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:03 Di 27.03.2007
Autor: leduart

Hallo
Ich stell die frage auf beantwortet, denn du hast ja jetzt sowohl die Funktio, als auch die nebenbedingung um sie zu maximieren.
Wenn noch ne Frage ist, haeng sie hier dran.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de