www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - mehrere Lösungen
mehrere Lösungen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrere Lösungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Mi 20.01.2016
Autor: Valkyrion

Aufgabe
Ein Staubecken wird zur Zeit der Schneeschmelze gefüllt. Da die Schneeschmelze temperaturabhängig ist, kann die momentane Zuflussrate des Wassers durch die Funktion w mit
w(t) = [mm] 50*sin(\bruch{\pi}{12}*t)+60; 0\le [/mm] t [mm] \le [/mm] 24
beschrieben werden (t in Stunden, w(t) in m³/h).

In welchem Zeitraum ist die momentane Zuflussrate größer als 100 m³/h?

Mit dem GTR bekomme ich dabei zwei Lösungen ( t= 3,54 & t=8,46)
Wenn ich das von Hand ausrechne bekomme ich nur eine Lösung (t=3,54).
w(t)> 100;
[mm] 50*sin(\bruch{\pi}{12}*t)+60 [/mm] = 100;
[mm] sin(\bruch{\pi}{12}*t) [/mm] = [mm] \bruch{4}{5}; [/mm]
[mm] \bruch{\pi}{12}*t [/mm] = [mm] arcsin(\bruch{4}{5}); [/mm]
[mm] \bruch{\pi}{12}*t [/mm] = 0,927;
t=3,54;

Wie komme ich (ohne GTR) an die zweite Lösung?

        
Bezug
mehrere Lösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Mi 20.01.2016
Autor: M.Rex

Hallo


> Ein Staubecken wird zur Zeit der Schneeschmelze gefüllt.
> Da die Schneeschmelze temperaturabhängig ist, kann die
> momentane Zuflussrate des Wassers durch die Funktion w mit
> w(t) = [mm]50*sin(\bruch{\pi}{12}*t)+60; 0\le[/mm] t [mm]\le[/mm] 24
> beschrieben werden (t in Stunden, w(t) in m³/h).

>

> In welchem Zeitraum ist die momentane Zuflussrate größer
> als 100 m³/h?
> Mit dem GTR bekomme ich dabei zwei Lösungen ( t= 3,54 &
> t=8,46)
> Wenn ich das von Hand ausrechne bekomme ich nur eine
> Lösung (t=3,54).
> w(t)> 100;
> [mm]50*sin(\bruch{\pi}{12}*t)+60[/mm] = 100;
> [mm]sin(\bruch{\pi}{12}*t)[/mm] = [mm]\bruch{4}{5};[/mm]
> [mm]\bruch{\pi}{12}*t[/mm] = [mm]arcsin(\bruch{4}{5});[/mm]
> [mm]\bruch{\pi}{12}*t[/mm] = 0,927;
> t=3,54;

>

> Wie komme ich (ohne GTR) an die zweite Lösung?

Du musst zwei Sachen beachten, einerseits die [mm] 2$\pi$-Periodizität [/mm] des Sinus und andererseits die Tatsache, dass [mm] \sin(x)=\sin(\pi-x) [/mm]

Also folgt nach der Anwendung des Arkussinus auf die Gleichung [mm] \sin\left(\frac{\pi}{12}\cdot t\right)=\frac{4}{5} [/mm] folgende Gleichungen:

[mm] \frac{\pi}{12}\cdot t=\arcsin\left(\frac{4}{5}\right) [/mm]
und
[mm] \pi-\frac{\pi}{12}\cdot t=\arcsin\left(\frac{4}{5}\right) [/mm]

Daraus folgen dann die beiden Lösungen 3,54 und 8,46

Nun beachte noch die [mm] 2$\pi$-Periodizität, [/mm] alle Lösungen der Gleichung wären also:
[mm] 3,54+2k\pi [/mm] und [mm] 8,46+2k\pi [/mm] dabei ist [mm] k\in\IZ [/mm]

Marius

Bezug
                
Bezug
mehrere Lösungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Mi 20.01.2016
Autor: Valkyrion

erst mal Danke für die Antwort, hat mir auch schon weitergeholfen.
Die beiden Lösungen sollen aber die einzigen sein, Wenn ich mir jetzt mal die beiden Seiten der Ausgangsgleichung als Funktionen anzeigen lasse, macht es auch Sinn, dass es nur zwei Lösungen sind.
Wieso ist dann 3,54 [mm] +2\pi [/mm] (k=1) = 9,82 auch eine Lösung?

Bezug
                        
Bezug
mehrere Lösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mi 20.01.2016
Autor: M.Rex

Hallo

> erst mal Danke für die Antwort, hat mir auch schon
> weitergeholfen.
> Die beiden Lösungen sollen aber die einzigen sein, Wenn
> ich mir jetzt mal die beiden Seiten der Ausgangsgleichung
> als Funktionen anzeigen lasse, macht es auch Sinn, dass es
> nur zwei Lösungen sind.
> Wieso ist dann 3,54 [mm]+2\pi[/mm] (k=1) = 9,82 auch eine Lösung?

Weil ich mich da leider vertan habe. Die Periodenlänge dieser Funktion ist hier nicht [mm] 2$\pi$, [/mm] wie bei der "Standard-Sinusfunktion", sondern 24, denn du hast ja noch den Vorfaktor [mm] \frac{\pi}{12} [/mm] vor dem t.

Damit bekommst du dann natürlich keine weiteren Lösungen im Intervall von 0 bis 24.

Falls du dir die Bedeutung der Parameter der Sinusfunktion nochmal genauer anschauen willst, kann ich []die Zusammenfassung bei mathenexus nur empfehlen.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de