www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - messbare Funktionen
messbare Funktionen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

messbare Funktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:28 So 11.11.2007
Autor: Irmchen

Aufgabe
Zeigen Sie, dass die folgenden Funktionen Meßbar sind:

(i)  Die charakteristische Funktion auf [mm] \mathbb Q [/mm] , d.h. die
     Abbildung [mm] \chi_{\mathbb Q } : \mathbb R \to \mathbb R [/mm] mit

[mm] \chi_{\mathbb Q} (x) = \left\{\begin{matrix} 1, & \ falls \ x \in \mathbb Q \\ 0, & \ falls \ x \notin \mathbb Q \end{matrix}\right. [/mm]

(ii) Die Funktion [mm] f : \mathbb R \to \mathbb R [/mm] , die gegeben ist durch

[mm] f(x) = \left\{\begin{matrix} \cos(x), \ & \ falls \ x \in \mathbb Q \\ 33, \ & \ falls \ x \notin \mathbb Q \end{matrix}\right. [/mm]

Hallo alle zusammen!

Ich habe einige Fragen zu dieser Aufgabe und hoffe einer kann mir hilfreich zur Seite stehen!

So, bei (i) weiß ich ja bereits, dass [mm] \chi_{\mathbb Q} [/mm] messbar ist [mm] \gdw \mathbb Q \in \mathcal B ( \mathbb R ) [/mm]. Da dies stimmt, ist somit auch gezeigt, dass die Funktion aus (i) messbar ist.

Sehe ich das so richtig? Oder fehlt etwas entscheidendes? Das scheint mir so wenig und macht mich unsicher!

Bei der Teilaufgabe  (ii) weiß ich leider nicht genau, wie ich dies zeigen kann :-(.  Das was mir so einfällt ist, dass man das irgendwie über stückweise messbare Funktionen zeigen sollte... Aber dazu haben wir in der Vorlesung noch nichts gemacht :-(.

Wäre für jede Hilfe dankbar!

Viele Grüße
Irmchen


Hallo nochmal!

Ich habe mich jetzt ein wenig in anderen Quellen ( Literatur ) informiert und denke, dass meine Vermutung für die Teilaufgabe (ii) die Richtige war...
Ich habe jetzt nochmal alleine versucht diese  Teilaufgabe zu lösen und würde mih freuen, wenn mir jemand ein Komentar dazu schreiben würde ob meine Lösungen für diese beiden Teilaufgabe o.k sind.

So, jetzt zur Teilaufgabe (ii):

Die Borelmengen [mm] X_1 := \mathbb Q [/mm] und [mm] X_2 := \mathbb R \backslash \mathbb Q [/mm] überdecken [mm] \mathbb R [/mm], also [mm] \mathbb R = X_1 \cup X_2 [/mm].
Nach der Theorie über stückweise meßbare FUnktionen ist f meßbar, wenn [mm] f \mid_{X_k} : ( X_k , \mathcal B ( \mathbb R ) \mid_{X_k} ) \to ( \mathbb R , \mathcal B (\mathbb R ) ) [/mm] meßbar ist für [mm] k = 1 , 2 [/mm].
Dies ist hier der Fall: Es ist nämlich  [mm] \mathcal B (\mathbb R )\mid_{X_k} = \mathcal B ( X_k ) [/mm]. Da [mm] f \mid_{X_1} = \cos_{X_1} und f\mid_{X_2} = 33\mid_{X_2} [/mm] stetig sind, sind sie auch messbar und somit dann auch f messbar.

Liege ich jetzt hiermit richtig?

Viele Grüße
Irmchen

        
Bezug
messbare Funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Mo 19.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de