www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - messbare funktionen,algebren
messbare funktionen,algebren < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

messbare funktionen,algebren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Sa 26.01.2008
Autor: bobby

Hallo!

Ich habe ein großes Problem mit dieser Aufgabe:

Sei [mm] (M,\mathcal{A},P) [/mm] ein Wahrscheinlichkeitsraum, [mm] Y_{n} [/mm] (für n [mm] \in\IN) [/mm] und Y reellwertige messbare Funktionen auf M. Betrachte die Menge K={ [mm] m\in [/mm] M: [mm] \limes_{n\rightarrow\infty}Y_{n}(m)=Y(m) [/mm] }. Zeige, dass [mm] K\in \mathcal{A} [/mm] ist.


Mir ist nicht klar, wie ich an diese Aufgabe rangehen muss, und was die einzelnen Schritte wären, die man dafür beweisen muss.
Vielleicht könnte mir jemand von euch weiterhelfen???

        
Bezug
messbare funktionen,algebren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Sa 26.01.2008
Autor: Somebody


> Hallo!
>  
> Ich habe ein großes Problem mit dieser Aufgabe:
>  
> Sei [mm](M,\mathcal{A},P)[/mm] ein Wahrscheinlichkeitsraum, [mm]Y_{n}[/mm]
> (für [mm]n \in\IN)[/mm] und Y reellwertige messbare Funktionen auf
> M. Betrachte die Menge [mm]K=\{m\in M: \limes_{n\rightarrow\infty}Y_{n}(m)=Y(m)\}[/mm]. Zeige, dass
> [mm]K\in \mathcal{A}[/mm] ist.
>  
>
> Mir ist nicht klar, wie ich an diese Aufgabe rangehen muss,
> und was die einzelnen Schritte wären, die man dafür
> beweisen muss.
>  Vielleicht könnte mir jemand von euch weiterhelfen???

Ich würde die Menge fragliche $K$ zunächst in der Form

[mm]K=\{m\in M\mid \liminf_{n\rightarrow \infty} Y_n(m)\leq Y(m) \text{ und } Y(m)\leq \limsup_{n\rightarrow \infty} Y_n(m)\}[/mm]


schreiben. Die "und" Bedingung kannst man dann als Durchschnitt von Mengen auffassen

[mm]K=\{m\in M\mid \liminf_{n\rightarrow \infty} Y_n(m)\leq Y(m)\}\;\cap\;\{m\in M\mid Y(m)\leq \limsup_{n\rightarrow \infty} Y_n(m)\}[/mm]


Dann würde ich versuchen, diese beiden Mengen mit Hilfe abzählbarer Durchschnitte und Vereinigungen zu schreiben. Etwa

[mm]\{m\in M\mid \limsup_{n\rightarrow \infty} Y_n(m)\leq Y(m)\}=\bigcap_{n\in \IN}\bigcup_{k\geq n}\{m\in M\mid Y_k(m)\leq Y(m)\}[/mm]

(analog für den [mm] $\liminf_{n\rightarrow\infty}\ldots$). [/mm]

Bezug
                
Bezug
messbare funktionen,algebren: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 16:34 Sa 26.01.2008
Autor: Blech


> Ich würde die Menge fragliche [mm]K[/mm] zunächst in der Form
>  
> [mm]K=\{m\in M\mid \liminf_{n\rightarrow \infty} Y_n(m)\leq Y(m) \text{ und } Y(m)\leq \limsup_{n\rightarrow \infty} Y_n(m)\}[/mm]

Andersrum:
[mm]K=\{m\in M\mid \liminf_{n\rightarrow \infty} Y_n(m)\geq Y(m) \text{ und } Y(m)\geq \limsup_{n\rightarrow \infty} Y_n(m)\}[/mm]

Sonst muß [mm] $Y_n(m)$ [/mm] ja nicht konvergieren.


Und der Übergang zu Mengen funktioniert so auch nicht.

> $ [mm] \{m\in M\mid \limsup_{n\rightarrow \infty} Y_n(m)\leq Y(m)\}=\bigcap_{n\in \IN}\bigcup_{k\geq n}\{m\in M\mid Y_k(m)\leq Y(m)\} [/mm] $

Bsp: für [mm] $Y_n(m)=\frac{1}{n}$ [/mm] und Y(m)=0 hätten wir:
$ [mm] \{m\in M\mid \limsup_{n\rightarrow \infty} \frac{1}{n}\leq 0\}=\bigcap_{n\in \IN}\bigcup_{k\geq n}\{m\in M\mid \frac{1}{k}\leq 0\} [/mm] $

Dabei ist die linke Menge natürlich M und die rechte [mm] $\emptyset$ [/mm]


Also:
[mm] $\{m\in M;\ \lim_{n\to \infty} Y_n(m) Wegen dem strikten < stimmt jetzt die Grundüberlegung, daß es ein [mm] $N\in\IN$ [/mm] geben muß, so daß [mm] $Y_n(m)

Bezug
                        
Bezug
messbare funktionen,algebren: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 16:57 Sa 26.01.2008
Autor: Somebody


> > Ich würde die Menge fragliche [mm]K[/mm] zunächst in der Form
>  >  
> > [mm]K=\{m\in M\mid \liminf_{n\rightarrow \infty} Y_n(m)\leq Y(m) \text{ und } Y(m)\leq \limsup_{n\rightarrow \infty} Y_n(m)\}[/mm]
>  
> Andersrum:
>  [mm]K=\{m\in M\mid \liminf_{n\rightarrow \infty} Y_n(m)\geq Y(m) \text{ und } Y(m)\geq \limsup_{n\rightarrow \infty} Y_n(m)\}[/mm]
>  
> Sonst muß [mm]Y_n(m)[/mm] ja nicht konvergieren

Stimmt, weil ja bei meiner Bedingung [mm] $Y_n(m)$ [/mm] in einer möglicherweise riesigen Lücke zwischen [mm] $\liminf_{n\rightarrow \infty}Y_n(m)$ [/mm] und [mm] $\limsup_{n\rightarrow \infty}Y_n(m)$ [/mm] frei herumschwimmen könnte.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de