www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - metrischer Raum
metrischer Raum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metrischer Raum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:37 Di 09.05.2006
Autor: LenaFre

Aufgabe
Sei (X,d) metrischer Rum und A,B  [mm] \subset [/mm] X. Definiere d(A,B):= inf [mm] \{d(x,y):x\inA,y \inB \} [/mm] Zeigen Sie:

1) A ist kompakt, B abgeschlossen und A [mm] \cap [/mm] B = [mm] \emptyset \Rightarrow [/mm] d(A,B)>0
2) Die anologe Aussage gilt im Allgemeinen nicht für zwei abgeschlossene Mengen. Geben Sie ein Beispiel!

Hallo zusammen!

Bei der oben genannten Aufgabe bin ich noch nicht sehr viel weier gekommen.
zu 1) Als Hinweis habe ich hierfür bekommen folgende Funktion zu betrachten: f(x)=d(x,B):=inf [mm] \{d(x,y):y \inB \}:A \to[0, \infty). [/mm] Außerdem darf ich die Aussage: Sei (X,d) ein metrischer Raum und p [mm] \in [/mm] X fixiert, dann ist f(x)=d(x,p) stetig. benutzen.

zu 2) Hab ich lan versucht ein Gegenbeispiel zu finden, doch mir ist bis jetzt noch  nichts eingefallen. Der enscheidende Unterschied muss ja darin liegen, dass es sich bei 1 um eine kompakte und eine geschlossenen Menge handelt und bei 2 um zwei geschlossenen Mengen. Also muss ja ein entscheidender Unterschied zwischen kompakter und geschlossener Mengen in diesem Fall liegen. z. B. ist ja das Intervall [0, [mm] \infty) [/mm] abgeschlossen aber nicht kompakt.

Da ich leider nicht weiter komme hoffe ich ihr könnt mir helfen. Vielen Dank!
Gruß Lena

        
Bezug
metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 Di 09.05.2006
Autor: felixf

Hallo Lena!

> Sei (X,d) metrischer Rum und A,B  [mm]\subset[/mm] X. Definiere
> d(A,B):= inf [mm]\{d(x,y):x\inA,y \inB \}[/mm] Zeigen Sie:
>  
> 1) A ist kompakt, B abgeschlossen und A [mm]\cap[/mm] B = [mm]\emptyset \Rightarrow[/mm]
> d(A,B)>0
>  2) Die anologe Aussage gilt im Allgemeinen nicht für zwei
> abgeschlossene Mengen. Geben Sie ein Beispiel!
>  Hallo zusammen!
>  
> Bei der oben genannten Aufgabe bin ich noch nicht sehr viel
> weier gekommen.
>  zu 1) Als Hinweis habe ich hierfür bekommen folgende
> Funktion zu betrachten: f(x)=d(x,B):=inf [mm]\{d(x,y):y \inB \}:A \to[0, \infty).[/mm]
> Außerdem darf ich die Aussage: Sei (X,d) ein metrischer
> Raum und p [mm]\in[/mm] X fixiert, dann ist f(x)=d(x,p) stetig.
> benutzen.

Zeige, dass diese Abbildung $f$ stetig ist. (Dafuer brauchst du, dass [mm] $d(\bullet, [/mm] p)$ stetig ist fuer jedes $p [mm] \in [/mm] X$.)

Wenn du das hast: Was weisst du ueber das Verhalten von stetigen Funktionen auf kompakten Mengen (insb. in bezug auf Minima)?

> zu 2) Hab ich lan versucht ein Gegenbeispiel zu finden,
> doch mir ist bis jetzt noch  nichts eingefallen. Der
> enscheidende Unterschied muss ja darin liegen, dass es sich
> bei 1 um eine kompakte und eine geschlossenen Menge handelt
> und bei 2 um zwei geschlossenen Mengen. Also muss ja ein
> entscheidender Unterschied zwischen kompakter und
> geschlossener Mengen in diesem Fall liegen. z. B. ist ja
> das Intervall [0, [mm]\infty)[/mm] abgeschlossen aber nicht
> kompakt.

Genau, du musst unbeschraenkte Mengen nehmen. Mit Intervallen im [mm] $\IR$ [/mm] kommst du aber nicht weit. Entweder nimmst du Mengen im [mm] $\IR^2$ [/mm] (etwa den Graph einer gewissen stetigen Funktion vereinigt mit der $y$-Achse), oder gewisse diskrete Mengen im [mm] $\IR$ [/mm] (eine davon etwa [mm] $\IN$). [/mm]

(Eine Menge heisst diskret, wenn jeder Punkt isoliert ist, es also zu jedem Punkt eine Umgebung gibt, in der kein anderer Punkt der Menge liegt. Solche Mengen sind in [mm] $\IR$ [/mm] bereits abgeschlossen.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de