www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - min{x,1} stetig nachweisen
min{x,1} stetig nachweisen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

min{x,1} stetig nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 Mi 02.12.2009
Autor: steppenhahn

Aufgabe
Zeige, dass [mm] $f:\IR\to\IR$ [/mm] mit $f(x) = [mm] min\{x,1\}$ [/mm] stetig ist.

Hallo!

Ich bin mir nicht ganz sicher, wie ich an die Aufgabe rangehen soll; mir machen die x Probleme, die nahe an 1 liegen.
Ich habe es mit der Folgenstetigkeit probiert. Dann müsste ich zeigen, dass für jede Folge [mm] $(x_{n})_{n\in\IN}\in\IR$ [/mm] mit [mm] $x_{n}\to [/mm] x$ für [mm] $n\to\infty$ [/mm] gilt, dass auch

[mm] $f(x_{n})\to [/mm] f(x)$ für [mm] $n\to\infty$ [/mm] ist.

Nun dachte ich an eine Fallunterscheidung:

Fall 1: $x < 1$:

Da [mm] $x_{n}\to [/mm] x$, gibt es ein [mm] $N\in\IN$ [/mm] sodass für alle $n > N$ gilt: [mm] $|x_{n}-x| [/mm] < [mm] \varepsilon$, [/mm] also auch

[mm] $|x_{n}| [/mm] = [mm] |x_{n}-x [/mm] + x| [mm] \le |x_{n}-x| [/mm] + |x| < [mm] \varepsilon [/mm] + |x|$.

(Ich versuche grade mehr oder weniger verzweifelt zu zeigen, dass dann ab einem gewissen n auch alle Folgenglieder kleiner als 1 sind, wie kann ich das zeigen?)

D.h. für [mm] $n\ge [/mm] N$ gilt dann:

[mm] $f(x_{n}) [/mm] = [mm] x_{n}$, [/mm] also ist gilt [mm] $f(x_{n}) [/mm] = [mm] x_{n} \to [/mm] x$ [mm] ($n\to\infty)$. [/mm]


Fall 2: $x = 1$

Hier könnte die Folge der [mm] $(x_{n})$ [/mm] ja von beiden Seiten kommen. Wie gehe ich dann vor?

[mm] $x_{n} \to [/mm] 1$ [mm] (n\to\infty) [/mm]
[mm] $f(x_{n}) [/mm] = [mm] \begin{cases}x_{n}\quad x_{n} < 1\\ 1\quad x_{n}\ge 1\end{cases}\to [/mm] 1$ ?

Fall 3: $x > 1$

Da [mm] $x_{n}\to [/mm] x$, gibt es ein [mm] $N\in\IN$ [/mm] sodass [mm] $|x_{n}-x| [/mm] < [mm] \varepsilon$. [/mm]
Hier weiß ich jetzt aber nicht genau, wie ich zeigen kann, dass dann [mm] |x_{n}| [/mm] > 1 für alle $n > N$ ist.

Dann könnte ich wieder sagen: Also ist [mm] $f(x_{n}) [/mm] = 1$ ab $n > N$, also gilt auch [mm] $f(x_{n}) [/mm]  = [mm] 1\to [/mm] 1 = f(x)$ [mm] (n\to\infty). [/mm]

Könnte ihr mir helfen, meine Lücken zu füllen? Oder geht es vielleicht mit der [mm] \varepsilon [/mm] - [mm] \delta [/mm] - Methode besser?

Grüße,
Stefan

        
Bezug
min{x,1} stetig nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Do 03.12.2009
Autor: leduart

Hallo
ich finde Folgenstetigkeit wegen dem für ALLE Folgen für einen Stegkeitsbeweis immer schwierig. (Unstetigkeit dafür damit leicht)
warum willst du nicht mit [mm] \epsilon, \delta [/mm] arbeiten. klar ist  dass dein konstante fkt f=1 für x>1 und die fkt f=x für x<1 stetig sind. Also nur die Steigkeit für x=1 und zwar für x<1 ist ein mini Problem.
x>1 ist ja f(x) konstant, also auch für jede Folge von [mm] x_n>1 [/mm] die gegen 1 konvergiert =1
Dann schreib einfach auf: was ist min((1-h),h) 0<h<1
und du bist schon fast fertig. das geht natürlich auch mit beliebigen 0 Folgen [mm] y_n [/mm] und [mm] x_n=1-y_n [/mm]
Gruss leduart

Bezug
        
Bezug
min{x,1} stetig nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:07 Do 03.12.2009
Autor: fred97

Hilft Dir

          $ f(x) = [mm] min\{x,1\}= \bruch{x+1-|x-1|}{2} [/mm] $

etwas ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de