www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - mind. 3mal gewinnen
mind. 3mal gewinnen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mind. 3mal gewinnen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:42 Mi 08.12.2004
Autor: Ares1982

Diese wurde als unteraufgabe zu "STichprobe von schrauben"  am 6,12,2004 gestellt!!!!!

Hi,
ich schreibe diese Frage nochmals hin, als Hoffnung das man mir ein Tip geben kann. Es geht diesmal, das man nicht mind. einmal sondern 3mal was schaffen soll und das kann ich garnicht. Hier also die Frage:

Die Wahrscheinlichkeit, dass die Mannschaft A MAnnschaft B
schlägt ist 0,6. Berechnen Sie die Wahrscheinlichkeit, dass
Mannschaft A in sechs Spielen mindestens dreimal in Folge
gewinnt.

Mir fällt hier nicht so recht was ein.
( Brigitte hoffe, dass du das liest)
Danke im vorraus !!!!!!!!


Ares


        
Bezug
mind. 3mal gewinnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Mi 08.12.2004
Autor: Brigitte

Lieber Ares!

> Die Wahrscheinlichkeit, dass die Mannschaft A MAnnschaft B
> schlägt ist 0,6. Berechnen Sie die Wahrscheinlichkeit, dass
> Mannschaft A in sechs Spielen mindestens dreimal in Folge
> gewinnt.

Also auch hier fällt mir nichts Eleganteres ein als die günstigen Kombinationen aufzuschreiben und deren Wahrscheinlichkeit zu berechnen (und anschließend zu addieren).

Zunächst mal bedeutet mind. 3 mal in Folge, dass genau drei mal, genau 4 mal, genau 5 mal oder genau 6 mal in Folge gewonnen wird.

Nehmen wir mal das Teilereignis, dass A 6 mal gewinnt. Ich notiere das durch das Ergebnis (s,s,s,s,s,s) (s=Sieg von A). Dafür ist die Wahrscheinlichkeit [mm] $0.6^6$. [/mm] (Klar)

Jetzt schauen wir den Fall an, dass A 5 mal gewinnt und zwar in Folge, d.h. B gewinnt entweder das erste oder letzte Spiel. Die Ergebnisse wären dann (n,s,s,s,s,s) bzw. (s,s,s,s,s,n). Für beide Möglichkeiten hat man die Wahrscheinlichkeit [mm] $0.6^5\cdot [/mm] 0.4$, da ja ein Spiel verloren geht.

So machst Du das auch mit 4 mal und 3 mal in Folge gewinnen. Dabei musst Du aber sorgfältig vorgehen und überlegen, wie die übrigen Spiele ausgehen können (sie müssen nicht notwendig alle verloren werden von A). Nach dieser Systematik müsstest Du die Aufgabe lösen können.

Viel Erfolg
Brigitte

Bezug
                
Bezug
mind. 3mal gewinnen: mögliche Antwort
Status: (Frage) beantwortet Status 
Datum: 16:28 Mi 08.12.2004
Autor: Ares1982

Hi Brigitte,
danke, dass du mir schnell geantwortet hast. Ich habe eine mögliche Antwort:

P(A1)= (s,s,s,s,s,s) = [mm] 0,6^6 [/mm]
P(A2)= (n,s,s,s,s,s) ; (s,s,s,s,s,n) = [mm] 2*(0,6^5*0,4) [/mm]
P(A3)= (s,s,s,s,n,n) ; (n,s,s,s,s,n) ; (n,n,s,s,s,s) = [mm] 3*(0,6^4*0,4²) [/mm]
P(A3)= (s,s,s,n,n,n) ; (n,s,s,s,n,n) ; (n,n,s,s,s,n) ; (n,n,n,s,s,s)
        = 4*(0,6³*0,4³)

P(A)= P(A1)+P(A2)+P(A3)+P(A4)=0,2264  [mm] \Rightarrow [/mm] 22,64%

Was sagst du dazu??
Danke, dass du ddir dafür Zeit genommen hast.

Ares

Bezug
                        
Bezug
mind. 3mal gewinnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Mi 08.12.2004
Autor: Brigitte

Hallo Ares!

> P(A1)= (s,s,s,s,s,s) = [mm]0,6^6 [/mm]
>  P(A2)= (n,s,s,s,s,s) ; (s,s,s,s,s,n) = [mm]2*(0,6^5*0,4) [/mm]
>  P(A3)= (s,s,s,s,n,n) ; (n,s,s,s,s,n) ; (n,n,s,s,s,s) =
> [mm]3*(0,6^4*0,4²) [/mm]
>  P(A3)= (s,s,s,n,n,n) ; (n,s,s,s,n,n) ; (n,n,s,s,s,n) ;
> (n,n,n,s,s,s)
>          = 4*(0,6³*0,4³)
>  
> P(A)= P(A1)+P(A2)+P(A3)+P(A4)=0,2264  [mm]\Rightarrow[/mm] 22,64%
>  
> Was sagst du dazu??

Schon ganz gut. Aber ich hatte ja bereits darauf hingewiesen, dass nicht notwendig A alle anderen Spiele verliert. Zum Beispiel gehört ja (s,s,s,s,n,s) auch zu dem Ereignis dazu. Das musst Du noch berücksichtigen!

Aber ansonsten bist Du auf dem richtigen Weg :-)

Liebe Grüße
Brigitte

Bezug
                        
Bezug
mind. 3mal gewinnen: Jetzt muss es stimmen
Status: (Frage) beantwortet Status 
Datum: 17:54 Mi 08.12.2004
Autor: Ares1982

Hi Brigitte,
jetzt müsste das Ergebnis stimmen!
Bitte sag ja :-)


P(A1)= (s,s,s,s,s,s) = [mm] 0,6^6 [/mm]
P(A2)= (n,s,s,s,s,s) ; (s,s,s,s,s,n) = [mm] 2*(0,6^5*0,4) [/mm]
P(A3)= (s,s,s,s,n,n) ; (n,s,s,s,s,n) ; (n,n,s,s,s,s) ; (s,s,s,s,n,s) ; (s,n,s,s,s,s)
         [mm] =3*(0,6^4*0,4^2) [/mm] + [mm] 2*(0,6^5*0,4) [/mm]
P(A4)= (s,s,s,n,n,n) ; (n,s,s,s,n,n) ; (n,n,s,s,s,n) ; (n,n,n,s,s,s) ;            
            (s,s,s,n,s,s) ; (s,s,n,s,s,s) ; (s,s,s,n,n,s) ; (s,s,s,n,s,n) ;  
            (s,n,n,s,s,s) ; (n,s,n,s,s,s)
        = 4*(0,6³*0,4³) [mm] +2*(0,6^5*0,4) [/mm] + [mm] 5*(0,6^4*0,4^2) [/mm]

P(A)= P(A1)+P(A2)+P(A3)+P(A4)=0,4545   [mm] \Rightarrow [/mm]  45,45%

Das ergebnis klingt vernünftig.

Ares

Bezug
                                
Bezug
mind. 3mal gewinnen: ganz nah dran
Status: (Antwort) fertig Status 
Datum: 20:19 Mi 08.12.2004
Autor: Brigitte

Lieber Ares!

> P(A1)= (s,s,s,s,s,s) = [mm]0,6^6[/mm]
>  P(A2)= (n,s,s,s,s,s) ; (s,s,s,s,s,n) = [mm]2*(0,6^5*0,4)[/mm]
>
> P(A3)= (s,s,s,s,n,n) ; (n,s,s,s,s,n) ; (n,n,s,s,s,s) ;
> (s,s,s,s,n,s) ; (s,n,s,s,s,s)
>           [mm]=3*(0,6^4*0,4^2)[/mm] + [mm]2*(0,6^5*0,4)[/mm]

[ok]

>  P(A4)= (s,s,s,n,n,n) ; (n,s,s,s,n,n) ; (n,n,s,s,s,n) ;
> (n,n,n,s,s,s) ;            
> (s,s,s,n,s,s) ; (s,s,n,s,s,s) ; (s,s,s,n,n,s) ;
> (s,s,s,n,s,n) ;  
> (s,n,n,s,s,s) ; (n,s,n,s,s,s)
>          = 4*(0,6³*0,4³) [mm]+2*(0,6^5*0,4)[/mm] + [mm]5*(0,6^4*0,4^2)[/mm]

Die 5 passt aber nicht zu dem, was Du vorher aufgeschrieben hast. Egal, es fehlen trotzdem noch die Fälle (s,n,s,s,s,n) und (n,s,s,s,n,s). Von daher kommst Du sogar auf 6 Möglichkeiten mit 4 Siegen. Hoffentlich haben wir nun wirklich nichts mehr vergessen ;-)

Liebe Grüße
Brigitte

Bezug
                                        
Bezug
mind. 3mal gewinnen: jetzt ist es vollbracht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:09 Do 09.12.2004
Autor: Ares1982

Liebe Brigitte,
hab es jetzt richtig. Ich danke dir für die Hilfe. Habe jetzt ein besseres Gefühl für solche Aufgaben. Habe heute schon wieder ein neues Aufgabenblatt bekommen. Ist wieder eine Stufe schwieriger. Werde es mal am Wochenende selber versuchen. Danke nochmals für die Hilfe!!!!!!!!!!!


                              Ares

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de