www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - minimaler Graph
minimaler Graph < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

minimaler Graph: Bedeutung
Status: (Frage) beantwortet Status 
Datum: 15:44 Do 20.08.2009
Autor: Pacapear

Hallo zusammen!

Ich verstehe die Bedeutung der Eigenschaft minimal bei Graphen nicht so wirklich.

Hier habe ich einen kleinen Auszug, in dem der Begriff vorkommt:

Wegen seines hübschen Beweises bringen wir noch einen Satz über die Anzhal von Graphen $G$, die minimal sind mit der Eigenschaft, dass $G$ bei jeder 2-Kantenfärbung ein einfarbiges Exemplar eines vorgegebenen Graphen $H$ enthält - einen zu $H$ isomorphen Teilgraphen also, dessen Kanten alle die gleiche Farbe tragen. Solche Graphen $G$ nennen wir Ramsey-minimal für $H$.

Vielleicht erstmal zum ersten "minimal".

Was bedeutet das?

Geht es da um den kleinsten Graphen, den man finden kann, der bei jeder 2-Kantenfärbung (was das ist, weiß ich noch nicht) ein solches einfarbiges Exemplar enthält?

Oder ist etwas ganz anderes gemeint?

Vielen Dank und LG, Nadine

        
Bezug
minimaler Graph: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 Do 20.08.2009
Autor: Bastiane

Hallo Pacapear!

> Hallo zusammen!
>  
> Ich verstehe die Bedeutung der Eigenschaft minimal bei
> Graphen nicht so wirklich.
>  
> Hier habe ich einen kleinen Auszug, in dem der Begriff
> vorkommt:
>  
> Wegen seines hübschen Beweises bringen wir noch einen Satz
> über die Anzhal von Graphen [mm]G[/mm], die minimal sind mit der
> Eigenschaft, dass [mm]G[/mm] bei jeder 2-Kantenfärbung ein
> einfarbiges Exemplar eines vorgegebenen Graphen [mm]H[/mm] enthält
> - einen zu [mm]H[/mm] isomorphen Teilgraphen also, dessen Kanten
> alle die gleiche Farbe tragen. Solche Graphen [mm]G[/mm] nennen wir
> Ramsey-minimal für [mm]H[/mm].
>  
> Vielleicht erstmal zum ersten "minimal".
>  
> Was bedeutet das?
>  
> Geht es da um den kleinsten Graphen, den man finden kann,
> der bei jeder 2-Kantenfärbung (was das ist, weiß ich noch
> nicht) ein solches einfarbiges Exemplar enthält?

Ich glaub', ja. Allerdings bin ich nicht ganz sicher. Soll das denn oben quasi die Definition sein, also soll es heißen, dass sich das "mit der Eigenschaft" auf die Definition des minimalen Graphen bezieht? Zuerst hatte ich es nämlich so verstanden, dass man Graphen betrachtet, die sowohl minimal sind, als auch die danach erklärte Eigenschaft haben. Was das minimal dann bedeuten sollte, wüsste ich aber auch nicht.

Eine Kantenfärbung sollte einfach eine Färbung der Kanten sein (du kannst dir also einfach bunte Stifte nehmen und jede Kante färben). Bei einer 2-Kantenfärbung nimmst du dementsprechend 2 Farben. :-) Wenn es um eine gültige 2-Kantenfärbung gilt (bin nicht sicher, ob das hier gemeint ist), dann dürften zwei benachbarte Kanten, die also einen Knoten gemeinsam haben, nicht dieselbe Farbe haben. Im Prinzip das Gleiche wie bei einer Knotenfärbung, nur halt für Kanten.
Hilft dir das?

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
minimaler Graph: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Do 20.08.2009
Autor: Pacapear

Hallo Bastiane!

> Ich glaub', ja. Allerdings bin ich nicht ganz sicher. Soll
> das denn oben quasi die Definition sein, also soll es
> heißen, dass sich das "mit der Eigenschaft" auf die
> Definition des minimalen Graphen bezieht? Zuerst hatte ich
> es nämlich so verstanden, dass man Graphen betrachtet, die
> sowohl minimal sind, als auch die danach erklärte
> Eigenschaft haben. Was das minimal dann bedeuten sollte,
> wüsste ich aber auch nicht.

Also ich weiß es auch nicht so genau.
Das Ganze ist eine Aussage, die vor einem Satz kommt.
Ich schreib mal den Satz auf, vielleicht hilft das weiter?

Ist $T$ ein Baum, aber kein Stern, so gibt es unendlich viele für $T$ Ramsey-minimale Graphen.

So, das ist der Satz.
Das Ganze ist übrigens aus dem Buch von Diestel ("Graphentheorie", S. 213, Prop. 7.2.3)
Ich hab auch überhaupt keine Ahnung, wie das gemeint sein soll.
Das Problem ist, dass ich unter anderem über diesen Satz einen Vortrag im Seminar halten muss...

Bezug
                
Bezug
minimaler Graph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:38 Do 20.08.2009
Autor: Pacapear

Hallo Bastiane.

> Ich glaub', ja. Allerdings bin ich nicht ganz sicher. Soll
> das denn oben quasi die Definition sein, also soll es
> heißen, dass sich das "mit der Eigenschaft" auf die
> Definition des minimalen Graphen bezieht? Zuerst hatte ich
> es nämlich so verstanden, dass man Graphen betrachtet, die
> sowohl minimal sind, als auch die danach erklärte
> Eigenschaft haben. Was das minimal dann bedeuten sollte,
> wüsste ich aber auch nicht.

Also je mehr ich darüber nachdenke, desto weniger verstehe ich das gerade, wie du das gemeint hast.

Was meinst du mit dass sich das "mit der Eigenschaft" auf die Definition des minimalen Graphen bezieht

Und was meinst du mit Zuerst hatte ich es nämlich so verstanden, dass man Graphen betrachtet, die sowohl minimal sind, als auch die danach erklärte Eigenschaft haben.

Irgendwie seh ich dazwischen grad keinen Unterschied mehr... :-(

LG, Nadine

Bezug
                        
Bezug
minimaler Graph: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 Fr 21.08.2009
Autor: Bastiane

Hallo Pacapear!

> Hallo Bastiane.
>  
> > Ich glaub', ja. Allerdings bin ich nicht ganz sicher. Soll
> > das denn oben quasi die Definition sein, also soll es
> > heißen, dass sich das "mit der Eigenschaft" auf die
> > Definition des minimalen Graphen bezieht? Zuerst hatte ich
> > es nämlich so verstanden, dass man Graphen betrachtet, die
> > sowohl minimal sind, als auch die danach erklärte
> > Eigenschaft haben. Was das minimal dann bedeuten sollte,
> > wüsste ich aber auch nicht.
>  
> Also je mehr ich darüber nachdenke, desto weniger verstehe
> ich das gerade, wie du das gemeint hast.

Oje. Meinst du, ich weiß jetzt noch, wie ich das gestern verstanden habe? ...
  

> Was meinst du mit dass sich das "mit der Eigenschaft" auf
> die Definition des minimalen Graphen bezieht

Also, hiermit meinte ich wohl, dass das, was da steht, die Definition des minimalen Graphen ist. So nach dem Motto: "Ein Graph heißt minimal, wenn er die folgende Eigenschaft hat..."

> Und was meinst du mit Zuerst hatte ich es nämlich so
> verstanden, dass man Graphen betrachtet, die sowohl minimal
> sind, als auch die danach erklärte Eigenschaft haben.

Naja, und hier wäre die Definition für minimal schon woanders gegeben gewesen, so dass man sie hier voraussetzt und einen Graphen nimmt, der sowohl minimal ist, als auch die folgende Eigenschaft hat. Demnach wären das zwei Eigenschaften, nämlich die der Minimalität und die im Zitat erwähnte. Im anderen Fall wäre es nur eine einzige Eigenschaft, nämlich die der Minimalität, die hier aber erst definiert wird.

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
minimaler Graph: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 So 23.08.2009
Autor: felixf

Hallo Nadine,

> Ich verstehe die Bedeutung der Eigenschaft minimal bei
> Graphen nicht so wirklich.
>  
> Hier habe ich einen kleinen Auszug, in dem der Begriff
> vorkommt:
>  
> Wegen seines hübschen Beweises bringen wir noch einen Satz
> über die Anzhal von Graphen [mm]G[/mm], die minimal sind mit der
> Eigenschaft, dass [mm]G[/mm] bei jeder 2-Kantenfärbung ein
> einfarbiges Exemplar eines vorgegebenen Graphen [mm]H[/mm] enthält
> - einen zu [mm]H[/mm] isomorphen Teilgraphen also, dessen Kanten
> alle die gleiche Farbe tragen. Solche Graphen [mm]G[/mm] nennen wir
> Ramsey-minimal für [mm]H[/mm].
>  
> Vielleicht erstmal zum ersten "minimal".
>  
> Was bedeutet das?
>  
> Geht es da um den kleinsten Graphen, den man finden kann,
> der bei jeder 2-Kantenfärbung (was das ist, weiß ich noch
> nicht) ein solches einfarbiges Exemplar enthält?

Ja, genau das ist gemeint.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de