www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - minimalpolynom
minimalpolynom < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:45 Fr 25.04.2008
Autor: mini111

hallo,
ich habe folgende frage zu dieser aufgabe:
finden sie die minimalpolynome dieser matrix:
[mm] A=\pmat{ 0 & 1 & 1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 } [/mm]
als erstes habe ich das charakeristische polynom berechnet,und zwar habe ich da [mm] :x^3-4*x^2+5*x-2=(x-2)*(x-1)^2 [/mm] heraus.ich haoffe das stimmt soweit aber wie macht man nun weiter?einfach die matrix A in das charakteristische polynom für x einsetzen?wenn ja wieso?ich hoffe jemand kann mir helfen.danke schon mal.

viele grüße

        
Bezug
minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Fr 25.04.2008
Autor: statler

Hallo!

>  ich habe folgende frage zu dieser aufgabe:
>  finden sie die minimalpolynome dieser matrix:
>  [mm]A=\pmat{ 0 & 1 & 1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 }[/mm]
>  als
> erstes habe ich das charakeristische polynom berechnet,und
> zwar habe ich da [mm]:x^3-4*x^2+5*x-2=(x-2)*(x-1)^2[/mm] heraus.ich
> haoffe das stimmt soweit aber wie macht man nun
> weiter?einfach die matrix A in das charakteristische
> polynom für x einsetzen?

Wenn du dich nirgends verrechnet hast, ergibt das 0. Eine Matrix erfüllt ihre charakteristische Gleichung. (Satz von Cayley-Hamilton)

Damit hast du aber noch nicht unbedingt das Minimalpolynom. Es könnte ja noch ein Polynom niedrigeren Grades geben, was es auch tut. Das MP teilt das charakteristische Polynom, ist aber nicht unbedingt irreduzibel. Umgekehrt teilt das charakteristische Polynom eine Potenz des MPs. Jetzt müßtest du dich mal auf die Suche nach dem MP machen.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:36 Fr 25.04.2008
Autor: mini111

hallo,
danke für deine antwort also ich habe es probiert,es kommt  für [mm] (x-2)*(x-1)^2 [/mm] null heraus und für (x-2)*(x-1)=0,für [mm] (x-1)\not=0 [/mm] und [mm] (x-2)^2\not= [/mm] 0.heißt das dann dass das minimalpolynom (x-2)*(x-1) ist?
danke und grüße

Bezug
                        
Bezug
minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Fr 25.04.2008
Autor: statler

Hi!

> Heißt das dann dass das
> minimalpolynom (x-2)*(x-1) ist?

Genau das heißt es.

Ciao
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de