www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - multivariate Normalverteilung
multivariate Normalverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

multivariate Normalverteilung: Tipp
Status: (Frage) überfällig Status 
Datum: 07:38 Di 26.01.2010
Autor: Irmchen

Guten Morgen alle zusammen!

[ Vorab: Dieser Beitrag von mir ist ein Problemchen, welches  während der Ausarbeitung meiner Diplomarbeit hervorgegangen ist ... Ich wäre dankbar, wenn ich Tipps erhalten könnte, um diese Unklarheit beseitigen zu können..]


Ich habe die folgende Situation:
X ist ein multivariat - normalverteilter Zufallsvektor auf [mm] \mathbb R^s [/mm] mit Erwartungswert [mm] \mu [/mm] und  Kovarianzmatrix [mm] \Sigma [/mm].

Mein Frage ist, warum muss  [mm] \Sigma_{i,i } > 0 [/mm] für [mm] 1 \le i \le s [/mm] gelten, damit die folgenden beiden Eigenschaften erfüllt sind:

1.  die eindim. Marginalverteilungen haben stetige kum.
     Verteilungsfunktionen

2.  [mm] supp( X ) [/mm] ist zusammenhängend                      ???


Also, wenn ich das richtig sehe, dann muss die Kovarianzmatrix  positiv definit sein, reicht also postitiv semidefinit nicht aus...
Das bedeutet, dass die Eigenwerte, die dort die Varianzen auf der Diagonalen sind, größer als Null sein müssen.
Also [mm] Var > 0 [/mm] sein...
Ist meine Überlegung damit bis jetzt so richtig?

Nun warum muss die Voraussetzung gelten, damit die beiden Eigenschaften gelten???

Was ich mir noch so dabei gedacht habe, ist, dass man genau dann eine Dichte hat,  wenn die Kovarianzmatrix invertierbar ist...

Nur, ich komme dann irgendwie nicht weiter...

Ich hoffe, dass mir jemand behilflich sein kann und mir nen Denkanstoß geben kann.

Vielen Dank!

Viele Grüße
Irmchen

        
Bezug
multivariate Normalverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Mi 03.02.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de