n-fache Differenzierbarkeit < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Wie oft ist die Funktion
f: R --> R
[mm] f(x)=\begin{cases} 1/ \pi (x-1)³, & \mbox{für } x \mbox{ <1} \\ \pi(x-1)³, & \mbox{für } x \mbox{ >=1} \end{cases}
[/mm]
differenzierbar? Bestimmen Sie die Ableitungen. |
Hi,
ich denke ich weiss wie diese Aufgabe theoretisch zu lösen ist, aber nur wenn das Ergebnis endlich ist, daher gibt es bestimmt eine bessere Möglichkeit als meine. Zu meinem Ansatz:
Die Funktion muss stetig sein. Also untersuche ich die Funktion erstmal auf Stetigkeit mit Hilfe der Grenzwertbestimmung. Dann schaue ich nach ob f(x) auch differenzierbar ist mit
[mm] f'(x_{0})=\limes_{x\rightarrow\x_{0}} \bruch{f(x)-f(x_{0})}{x-x_{0}}
[/mm]
Ich komme so zum Ergebnis, dass f(x) stetig ist und f'(x)=0 ist. Mit dieser Methode müsste ich das jetzt solange machen, bis die Ableitung an [mm] x_{0} [/mm] von rechts und links nicht mehr identisch sind... aber das kanns ja wohl nicht sein... Gibt es da auch eine bessere Methode?
Ich könnte z.B auch die Ableitungen mehrmals durchführen und dann nur die Stetigkeit an [mm] x_{0} [/mm] prüfen. Sobald die Funktion nicht stetig ist, ist die Ableitung nicht möglich. Aber das geht auch nur wenn die Funktion ein paar mal ableitbar ist. Wenn sie z.B. 10mal ableitbar wäre, wäre das ja trotzdem ein riesiger Rechenaufwand...
lg
|
|
|
|
Hallo aliaszero,
> Wie oft ist die Funktion
> f: R --> R
> [mm]f(x)=\begin{cases} 1/ \pi (x-1)³, & \mbox{für } x \mbox{ <1} \\ \pi(x-1)³, & \mbox{für } x \mbox{ >=1} \end{cases}[/mm]
>
> differenzierbar? Bestimmen Sie die Ableitungen.
> Hi,
> ich denke ich weiss wie diese Aufgabe theoretisch zu lösen
> ist, aber nur wenn das Ergebnis endlich ist, daher gibt es
> bestimmt eine bessere Möglichkeit als meine. Zu meinem
> Ansatz:
> Die Funktion muss stetig sein. Also untersuche ich die
> Funktion erstmal auf Stetigkeit mit Hilfe der
> Grenzwertbestimmung. Dann schaue ich nach ob f(x) auch
> differenzierbar ist mit
> [mm]f'(x_{0})=\limes_{x\rightarrow\x_{0}} \bruch{f(x)-f(x_{0})}{x-x_{0}}[/mm]
>
> Ich komme so zum Ergebnis, dass f(x) stetig ist und f'(x)=0
> ist. Mit dieser Methode müsste ich das jetzt solange
> machen, bis die Ableitung an [mm]x_{0}[/mm] von rechts und links
> nicht mehr identisch sind... aber das kanns ja wohl nicht
> sein... Gibt es da auch eine bessere Methode?
Die entscheidende Stelle ist ja die, wann die Ableitungen konstant sind.
Diese Ableitungen sind dann genauer zu untersuchen.
>
> Ich könnte z.B auch die Ableitungen mehrmals durchführen
> und dann nur die Stetigkeit an [mm]x_{0}[/mm] prüfen. Sobald die
> Funktion nicht stetig ist, ist die Ableitung nicht möglich.
> Aber das geht auch nur wenn die Funktion ein paar mal
> ableitbar ist. Wenn sie z.B. 10mal ableitbar wäre, wäre das
> ja trotzdem ein riesiger Rechenaufwand...
> lg
Gruß
MathePower
|
|
|
|