www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - n-te Wurzel
n-te Wurzel < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n-te Wurzel: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:02 Mi 09.11.2011
Autor: fagottator

Aufgabe
a) Wieso wird bei der Definition der n-ten Wurzel [mm] $\wurzel[n]{a}$ [/mm] mit $n [mm] \in \IN$ [/mm] normalerweise verlangt, dass  $a [mm] \ge [/mm] 0$ sein muss, obwohl doch für ungerade n die Potenzfunktion $ [mm] \IR \to \IR$, [/mm] $x [mm] \mapsto x^{n}$ [/mm] in ganz [mm] $\IR$ [/mm] umkehrbar ist?

b) Zeigen Sie für beliebige natürliche Zahlen k und n, dass aus [mm] $\wurzel[n]{k} \in \IQ$ [/mm] stets [mm] $\wurzel[n]{k} \in \IN$ [/mm] folgt.

c) Es seien p und q zwei Primzahlen. Wann sind [mm] $\wurzel{p} [/mm] + [mm] \wurzel{q}$ [/mm] bzw. [mm] $\wurzel{p} \cdot \wurzel{q}$ [/mm] irrational?

Hallo zusammen,

zu a) und b) habe ich schon Ideen, für die ich gerne Rückmeldungen hätte, ob ich richtig denke...

zu a): $a [mm] \ge [/mm] 0$ wird verlangt, da [mm] $\wurzel[n]{a}$ [/mm] dann für alle $n [mm] \in \IN$ [/mm] definiert ist. Würde man $a < 0$ zulassen, dann wäre [mm] $\wurzel[n]{a}$ [/mm] nur noch für alle ungeraden $n [mm] \in \IN$ [/mm] definiert. Da aber [mm] $\wurzel[n]{a}$ [/mm] für alle $n [mm] \in \IN$ [/mm] definiert sein soll, muss die Einschränkung $a [mm] \ge [/mm] 0$ gemacht werden.

zu b): [mm] $\wurzel[n]{k} \in \IQ \Rightarrow \wurzel[n]{k} [/mm] = [mm] \bruch{p}{q}$ [/mm] mit $p,q [mm] \in [/mm] IZ$ [benötige ich $ggt(p,q) = 1$???]
[mm] $\wurzel[n]{k} [/mm] = [mm] \bruch{p}{q} \Rightarrow [/mm] k =  [mm] (\bruch{p}{q})^{n} [/mm] = [mm] \bruch{p^n}{q^n} \in \IN$ [/mm]
Wie komme ich denn jetzt hier weiter? Kann ich durch [mm] $\bruch{p^n}{q^n} \in \IN$ [/mm] etwas über [mm] $p^n, q^n$ [/mm] aussagen und dann auf p und q zurückschließen?

zu c) habe ich momentan leider noch gar keine Idee... Vielleicht kann mir ja jemand bei einem Ansatz helfen...

LG fagottator

        
Bezug
n-te Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 Mi 09.11.2011
Autor: donquijote


> a) Wieso wird bei der Definition der n-ten Wurzel
> [mm]\wurzel[n]{a}[/mm] mit [mm]n \in \IN[/mm] normalerweise verlangt, dass  [mm]a \ge 0[/mm]
> sein muss, obwohl doch für ungerade n die Potenzfunktion
> [mm]\IR \to \IR[/mm], [mm]x \mapsto x^{n}[/mm] in ganz [mm]\IR[/mm] umkehrbar ist?
>  
> b) Zeigen Sie für beliebige natürliche Zahlen k und n,
> dass aus [mm]\wurzel[n]{k} \in \IQ[/mm] stets [mm]\wurzel[n]{k} \in \IN[/mm]
> folgt.
>  
> c) Es seien p und q zwei Primzahlen. Wann sind [mm]\wurzel{p} + \wurzel{q}[/mm]
> bzw. [mm]\wurzel{p} \cdot \wurzel{q}[/mm] irrational?
>  Hallo zusammen,
>  
> zu a) und b) habe ich schon Ideen, für die ich gerne
> Rückmeldungen hätte, ob ich richtig denke...
>  
> zu a): [mm]a \ge 0[/mm] wird verlangt, da [mm]\wurzel[n]{a}[/mm] dann für
> alle [mm]n \in \IN[/mm] definiert ist. Würde man [mm]a < 0[/mm] zulassen,
> dann wäre [mm]\wurzel[n]{a}[/mm] nur noch für alle ungeraden [mm]n \in \IN[/mm]
> definiert. Da aber [mm]\wurzel[n]{a}[/mm] für alle [mm]n \in \IN[/mm]
> definiert sein soll, muss die Einschränkung [mm]a \ge 0[/mm]
> gemacht werden.

würde ich auch so sehen

>  
> zu b): [mm]\wurzel[n]{k} \in \IQ \Rightarrow \wurzel[n]{k} = \bruch{p}{q}[/mm]
> mit [mm]p,q \in IZ[/mm] [benötige ich [mm]ggt(p,q) = 1[/mm]???]

ja. ist auch kein problem, da jede rationale zahl so darstellbar ist

>  
> [mm]\wurzel[n]{k} = \bruch{p}{q} \Rightarrow k = (\bruch{p}{q})^{n} = \bruch{p^n}{q^n} \in \IN[/mm]
>  
> Wie komme ich denn jetzt hier weiter? Kann ich durch
> [mm]\bruch{p^n}{q^n} \in \IN[/mm] etwas über [mm]p^n, q^n[/mm] aussagen und
> dann auf p und q zurückschließen?

sind p und q teilerfremd, so auch [mm] p^n [/mm] und [mm] q^n. [/mm] soll der quotient in [mm] \IN [/mm] sein, muss [mm] q^n=1 [/mm] sein.


>  
> zu c) habe ich momentan leider noch gar keine Idee...
> Vielleicht kann mir ja jemand bei einem Ansatz helfen...

der zweite teil kann mit b) gelöst werden.
und für den ersten teil kannst du den ausdruck quadrieren ....

>  
> LG fagottator


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de