www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - n-ten Ableitung
n-ten Ableitung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n-ten Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Fr 30.12.2005
Autor: tom.bg

Aufgabe
Sei u und v beliebig oft differenzierbare reele Funktionen. Berechnen Sie die ersten drei Ableitungen der Funktion y(x)=u(x)*v(x). Stellen Sie eine Vermutung Für die allgemeine Form der n-ten Abletung auf und beweisen Sie diese durch Induktion.

Kann mir jemand dabei helfen?? bitte!! brauche gute Tipps!!
Was soll ich unter „ersten drei Ableitungen der Funktion“ verstehen?? u. s. w.

Danke;)


        
Bezug
n-ten Ableitung: Tipp
Status: (Antwort) fertig Status 
Datum: 22:39 Fr 30.12.2005
Autor: mushroom

Hallo tom.bg!

Also [mm] y^{(1)}(x) [/mm] = [mm] u^{(1)}(x)v(x) [/mm] + [mm] u(x)v^{(1)}(x). [/mm] Für die weiteren Ableitungen brauchst du jetzt nur wieder die Produktregel für die einzelnen Summanden anwenden. Die allgemeine Form der n-ten Ableitung ist nach den drei ersten Ableitungen relativ gut ersichtlich.
Noch ein Tipp für den Beweis: [mm] u^{(1)}(x) \not= [/mm] u(x)

Gruß
Markus

Bezug
        
Bezug
n-ten Ableitung: Link
Status: (Antwort) fertig Status 
Datum: 17:32 So 01.01.2006
Autor: mathmetzsch

Hallo,

bin gerade zufällig hierdrauf gestoßen:

[]http://3pi.org/Mathematik/Facharbeit/NicoKramer.html

Da steht der Beweis!

VG Daniel

Bezug
                
Bezug
n-ten Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:14 Di 03.01.2006
Autor: kuminitu

Wo steht der bEweis?
habe ihn nicht gefunden???


Bezug
                        
Bezug
n-ten Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:55 Di 03.01.2006
Autor: Leopold_Gast

Hast du die ersten drei Ableitungen schon berechnet, wie die Aufgabe es vorschlägt? Das solltest du unbedingt tun. Dann siehst du, daß

[mm]\left( uv \right)^{(n)} \ = \ \sum_{\nu=0}^n~{n \choose {\nu}} \, u^{(\nu)} v^{(n - \nu)}[/mm]

gilt. Und der Beweis verläuft fast gleich wie der Beweis des []Großen Binomischen Lehrsatzes. Beachte jedoch: [mm]u^{(0)} = u, \, u^{(1)} = u'[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de