www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - natürlicher Logarithmus
natürlicher Logarithmus < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

natürlicher Logarithmus: Frage
Status: (Frage) beantwortet Status 
Datum: 12:52 Sa 16.04.2005
Autor: Maiko

Hallo!

Ich habe nur mal eine kleine Frage bezüglich einer äquivalenten Umformungsregel:

4*ln(x-1) - 7*ln(x+3) + 5*ln(x-4) =

[mm] ln*(\bruch{(x-1)^4 * (x-4)^5}{(x+3)^7}) [/mm]

Ich weiß, dass diese Umformung korrekt ist.
Ich dachte mir allerdings, dass es doch so lauten müsste:

4*ln(x-1) - 7*ln(x+3) + 5*ln(x-4) =

[mm] ln*(\bruch{(x-1)^4 + (x-4)^5}{(x+3)^7}) [/mm]

Warum ist die zweite Umformung falsch? Gibt es ein Gesetz, welches diese Umformung "vorschreibt"?


        
Bezug
natürlicher Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Sa 16.04.2005
Autor: sirprize

Hi Maiko!

> Ich habe nur mal eine kleine Frage bezüglich einer
> äquivalenten Umformungsregel:
>  
> 4*ln(x-1) - 7*ln(x+3) + 5*ln(x-4) =
>
> [mm]ln(\bruch{(x-1)^4 * (x-4)^5}{(x+3)^7})[/mm]
>  
> Ich weiß, dass diese Umformung korrekt ist.

Ist sie auch! :-)

>  Ich dachte mir allerdings, dass es doch so lauten müsste:
>  
> 4*ln(x-1) - 7*ln(x+3) + 5*ln(x-4) =
>
> [mm]ln(\bruch{(x-1)^4 + (x-4)^5}{(x+3)^7})[/mm]
>  
> Warum ist die zweite Umformung falsch?

Unter anderem, weil sie inkonsequent wäre: aus $-7*ln(x+3)$ machst du einen Bruch, aus $+5*ln(x-4)$ bleibt eine Summe.

> Gibt es ein Gesetz, welches diese Umformung
> "vorschreibt"?

Natürlich. In meinem AnalysisI-Skript stehen die unter "Eigenschaften des natürlichen Logarithmus"
Unter anderem sind dies:
1. [mm]log(x*y) = log(x)+log(y)[/mm]
2. [mm] $log(\bruch{x}{y}) [/mm] = log(x)-log(y)$
3. [mm] $log(y^x) [/mm] = x*log(y)$,
wobei 1. und 2. [mm] $\forall [/mm] x,y > 0$ gilt, und 3. [mm] $\forall [/mm] x,y [mm] \in \IR, [/mm] y > 0$.

Gruss,
Michael



Bezug
                
Bezug
natürlicher Logarithmus: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:07 Sa 16.04.2005
Autor: Maiko

Haha!

Genau die 3 Gesetze von unten habe ich gesucht!

Vielen Dank für die schnelle Hilfe.

Grüße!

Bezug
        
Bezug
natürlicher Logarithmus: Zusatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Sa 16.04.2005
Autor: Zwerglein

Hi, Maiko,

aber beachte bitte, dass auch die erste Umformung nur für x > 4 sinnvoll ist!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de