www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - negative werte kompl. fkt.
negative werte kompl. fkt. < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

negative werte kompl. fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 08.10.2008
Autor: HansPhysikus

Aufgabe
[mm] h(z)=\frac{z-z_1}{z-z_2} [/mm] sei eine komplexe Funtkion und [mm] z_1 [/mm] und [mm] z_2 \in \IC. [/mm]

Auf welcher Teilmenge von [mm] \IC [/mm] nimmt die Funktion negativ reelle Werte an?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

meine Idee war:

[mm] \frac{z-z_1}{z-z_2}\in \IR_{<0} [/mm] <=> [mm] Arg(\frac{z-z_1}{z-z_2})=\pi [/mm]

[mm] \frac{z-z_1}{z-z_2} [/mm] = [mm] Arg(z-z_1)-Arg(z-z_2) [/mm]  (mod [mm] 2\pi) [/mm]

D.h. der Winkelunterschied zwischen Zähler und Nenner muss [mm] \pi [/mm] betragen.

Da ich aber eine Bediungung für z finden will, müsste ich ja

[mm] \frac{z-z_1}{z-z_2} [/mm] = [mm] Arg(z-z_1)-Arg(z-z_2) [/mm]  (mod [mm] 2\pi) [/mm]

nach z auflösen. Hier bleibe ich aber stecken.

LG,
HP

        
Bezug
negative werte kompl. fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Mi 08.10.2008
Autor: Al-Chwarizmi


> [mm]h(z)=\frac{z-z_1}{z-z_2}[/mm] sei eine komplexe Funtkion und [mm]z_1[/mm]
> und [mm]z_2 \in \IC.[/mm]
>  
> Auf welcher Teilmenge von [mm]\IC[/mm] nimmt die Funktion negativ
> reelle Werte an?

> Hallo,
>  
> meine Idee war:
>  
> [mm]\frac{z-z_1}{z-z_2}\in \IR_{<0}[/mm] <=>
> [mm]Arg(\frac{z-z_1}{z-z_2})=\pi[/mm]
>  
> [mm]\frac{z-z_1}{z-z_2}[/mm] = [mm]Arg(z-z_1)-Arg(z-z_2)[/mm]  (mod [mm]2\pi)[/mm]
>  
> D.h. der Winkelunterschied zwischen Zähler und Nenner muss
> [mm]\pi[/mm] betragen.
>  


hallo HP,

das überlegt man sich am besten anschaulich in der
Gauss- Ebene. [mm] z-z_1 [/mm] entspricht dem Pfeil vom Punkt [mm] z_1 [/mm]
zum Punkt z, [mm] z-z_2 [/mm] demjenigen von [mm] z_2 [/mm] nach z.
Wegen dem Winkelunterschied [mm] \pi [/mm] müssen diese Pfeile
entgegengesetzte Richtungen haben. Sie treffen Spitze
gegen Spitze im Punkt z zusammen.
Daraus folgt, dass z auf der Verbindungsstrecke zwischen
[mm] z_1 [/mm] und [mm] z_2 [/mm] liegen muss (Endpunkte ausgeschlossen,
weil der Quotient für [mm] z=z_2 [/mm] nicht definiert und für [mm] z=z_1 [/mm]
gleich null, also nicht negativ ist).

LG

Bezug
                
Bezug
negative werte kompl. fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:29 Mi 08.10.2008
Autor: HansPhysikus

Danke schön.

Lg,
HP

Bezug
                
Bezug
negative werte kompl. fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mi 08.10.2008
Autor: HansPhysikus

Jetzt habe ich doch noch eine Frage. Wenn ich diese Menge "mathematisch" aufschreiben will, ist dann folgendes ok?

[mm] \{\lambda(z_1- z_2) | \lambda \in (0;1)\} [/mm]

LG,
HP

Bezug
                        
Bezug
negative werte kompl. fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Mi 08.10.2008
Autor: Al-Chwarizmi


> Jetzt habe ich doch noch eine Frage. Wenn ich diese Menge
> "mathematisch" aufschreiben will, ist dann folgendes ok?
>  
> [mm]\{\lambda(z_1- z_2) | \lambda \in (0;1)\}[/mm]
>  
> LG,
>  HP

nicht ganz ...

         [mm]\{z_2+\lambda(z_1- z_2)\ |\ \lambda \in (0;1)\}[/mm]

Gruß   :-)


Bezug
        
Bezug
negative werte kompl. fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 10:26 Do 09.10.2008
Autor: fred97

Ergänzend zu Al-Chwarizmis Antwort die folgende Rechnung:

[mm] \bruch{z-z_1}{z-z_2} [/mm] = t <0  [mm] \gdw z-z_1 [/mm] = [mm] t(z-z_2) \gdw [/mm]

(1-t)z = [mm] (1-t)z_1+t(z_1-z_2) \gdw [/mm] z = [mm] z_1 +\bruch{t}{t-1}(z_2-z_1) [/mm] = z = [mm] z_1 +s(z_2-z_1) [/mm] ,

wobei s = [mm] \bruch{t}{t-1}. [/mm]


Die Abb. t --> [mm] \bruch{t}{t-1} [/mm]  bildet das Intervall [mm] (-\infty,0) [/mm] bijektiv auf das Intervall (0,1) ab.


Fazit: [mm] \bruch{z-z_1}{z-z_2} [/mm] ist [mm] \in \IR [/mm] und <0   [mm] \gdw [/mm]

z [mm] \in [/mm] { [mm] z_1 +s(z_2-z_1): [/mm] s [mm] \in [/mm] (0,1)}  ( "offene" Verbindungstrecke von [mm] z_1 [/mm] und [mm] z_2) [/mm]


FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de