www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - nicht-noethersch
nicht-noethersch < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nicht-noethersch: Beispiel
Status: (Frage) beantwortet Status 
Datum: 21:18 Di 27.02.2007
Autor: Schokonascher

Hi, wir hatten die Definition von noethersch. Die versteh ich ja und ich finde locker auch ein Beispiel dazu. Schwieriger wird es, mir einen NICHT-noetherschen Ring vorzustellen. Könnte mir jemand ein möglichst einfaches Beispiel nennen?

Wären sehr nett. Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
nicht-noethersch: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Di 27.02.2007
Autor: felixf

Hi Schokonascher,

> Hi, wir hatten die Definition von noethersch. Die versteh
> ich ja und ich finde locker auch ein Beispiel dazu.
> Schwieriger wird es, mir einen NICHT-noetherschen Ring
> vorzustellen. Könnte mir jemand ein möglichst einfaches
> Beispiel nennen?

also das meiner Meinung nach einfachste (ist ja immer Geschmackssache :) ) Beispiel ist folgendes:

du nimmst irgendeinen Ring $R$ (etwa [mm] $\IZ$ [/mm] oder [mm] $\IQ$ [/mm] oder [mm] $\IC$, [/mm] was dir halt am besten gefaellt) und eine unendliche Menge von Unbestimmten ueber $R$, etwa [mm] $x_n$, [/mm] $n [mm] \in \IN$. [/mm] Dann betrachtest du den Ring $S := [mm] R[x_n \mid [/mm] n [mm] \in \IN]$, [/mm] also den Polynomring in unendlich vielen Unbestimmten.

Wenn du nicht weisst wie der aussieht: die Elemente sind jeweils $R$-Linearkombinationen von Monomen (so wie immer), nur das die Monome jeweils nur endlich viele Unbestimmte enthalten. Sprich, in jedem (konkreten) Polynom aus $S$ tauchen nur endlich viele verschiedene Unbestimmte auf.

In $S$ kannst du jetzt die Ideale [mm] $\mathfrak{a}_n [/mm] := [mm] (x_1, \dots, x_n)$ [/mm] betrachten, $n [mm] \in \IN$. [/mm] Das Ideal [mm] $\mathfrak{a}_n$ [/mm] besteht aus genau den Polynomen, in dem jedes Monom mindestens eine der Unbestimmten [mm] $x_1, \dots, x_n$ [/mm] enthaelt.

Insbesondere gilt [mm] $\mathfrak{a}_n \subsetneqq \mathfrak{a}_{n+1}$ [/mm] fuer jedes $n [mm] \in \IN$, [/mm] du hast also eine unendliche aufsteigende Kette von Idealen.

Und falls $R$ ein Integritaetsring ist, so sind die Ideale [mm] $\mathfrak{a}_n$ [/mm] auch noch alle Primideale, du hast also ein Beispiel fuer einen Ring mit unendlicher Krulldimension (falls dir das schon was sagt; wenn nicht, vielleicht erinnerst du dich an dieses Beispiel wenn du die Krulldimension irgendwann mal kennenlernst :) ).

LG Felix


Bezug
                
Bezug
nicht-noethersch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 Mi 28.02.2007
Autor: Schokonascher

Danke! das leuchtet ein. Krulldimension sagt mir noch nichts, aber das kommt bestimmt.

Merci für deine Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de