www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - nicht messbar?
nicht messbar? < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nicht messbar?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Mo 17.11.2008
Autor: electraZ

Guten Abend an alle!

Ich quelle mich gerade bei der suche nach einer nicht messbaren funktion, muss sie dafür unstetig sein?

genauer geht es darum, dass |f| messbar sein soll und f selbst nicht.

danke im Voraus!


        
Bezug
nicht messbar?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Mo 17.11.2008
Autor: vivo

Hallo,

sei [mm] \lambda [/mm] das Lebesgue-Maß auf [mm] \IR, [/mm] finde eine nicht [mm] \lambda-messbare [/mm] Menge M [mm] \subseteq \IR [/mm]

definiere die charakteristische Funktion:

[mm]\mathcal{X}_M: \IR \to \{0,1\}, x \to[/mm] [mm] \begin{cases} 0, & \mbox{falls } x \in \mbox{ M} \\ 1, & \mbox{falls } x \not\in \mbox{ M} \end{cases} [/mm]
diese ist dann nicht meßbar.

zum Beispiel ist eine Vitali Menge nicht meßbar. siehe []hier
gruß


Bezug
                
Bezug
nicht messbar?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Mo 17.11.2008
Autor: electraZ

Aber so wie ich sehe, der Betrag von dieser Funktion ist genauso nicht messbar? oder irre ich mich?

Bezug
                        
Bezug
nicht messbar?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:09 Mo 17.11.2008
Autor: electraZ

es ist sogar unter |f| eher eine Norm von f zu verstehen als ein Betrag...

Bezug
                        
Bezug
nicht messbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mo 17.11.2008
Autor: vivo

ja, dass stimt! sorry dass hab ich überlesen ...

schau mal   hier
Teil b)

gruß

Bezug
                        
Bezug
nicht messbar?: Tipp dennoch gut!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:26 Mo 17.11.2008
Autor: Marcel

Hallo,

> Aber so wie ich sehe, der Betrag von dieser Funktion ist
> genauso nicht messbar? oder irre ich mich?

nein, Du irrst nicht, aber der Tipp ist dennoch gut. Man sollte nur die Funktion außerhalb von [mm] $\,M\,$ [/mm] anders definieren, am sinnvollsten in naheliegendster Weise. Siehe dazu meine andere Antwort ;-)  

Gruß,
Marcel

Bezug
        
Bezug
nicht messbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Mo 17.11.2008
Autor: Marcel

Hallo,

> Guten Abend an alle!
>  
> Ich quelle mich gerade bei der suche nach einer nicht
> messbaren funktion, muss sie dafür unstetig sein?
>  
> genauer geht es darum, dass |f| messbar sein soll und f
> selbst nicht.

Du kannst Vivo's Tipp benutzen bzw. etwas variieren:

Setze [mm] $f(x):=\chi_M(x)-\chi_{\IR \setminus M}(x)=\begin{cases} 1, & \mbox{für } x \in M \\ -1, & \mbox{für } x \notin M \end{cases}$ [/mm] ($x [mm] \in \IR$) [/mm] für eine [mm] nicht-$\lambda$-messbare [/mm] Menge $M [mm] \subset \IR\,.$ [/mm] Dann ist [mm] $\,f\,$ [/mm] nicht [mm] $\lambda$-messbar [/mm] (z.B. weil [mm] $f^{-1}(\{1\})=M$ [/mm] dann nicht [mm] $\lambda$-messbar [/mm] ist.)

Aber es ist [mm] $|f(x)|\,=\,1$ [/mm] ($x [mm] \in \IR$) [/mm] und damit offensichtlich [mm] $|\,f\,|$ $\lambda$-messbar. [/mm]

Gruß,
Marcel

Bezug
                
Bezug
nicht messbar?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:24 Mo 17.11.2008
Autor: electraZ

heißt das, dass wenn [mm] f^{-1}(\{1\}) [/mm] aus M ist, das nicht messbar ist, dann ist die beliebige Teilmenge davon auch nicht messbar?? oder hast du wirklich gemeint: [mm]f^{-1}(\{1\})=M[/mm] mit "Gleichzeichen"?

vielen Dank für deine Mühe!

Bezug
                        
Bezug
nicht messbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 Mo 17.11.2008
Autor: Marcel

Hallo,

> heißt das, dass wenn [mm]f^{-1}(\{1\})[/mm] aus M ist, das nicht
> messbar ist, dann ist die beliebige Teilmenge davon auch
> nicht messbar??

nein. Eine einpunktige Teilmenge einer nichtmessbaren Teilmenge $M [mm] \subset \IR$ [/mm] ist ja durchaus auch eine messbare Menge.

> oder hast du wirklich gemeint:
> [mm]f^{-1}(\{1\})=M[/mm] mit "Gleichzeichen"?

Ich meinte wirklich mit Gleichheitszeichen (und natürlich musst Du auch erstmal eine nichtmessbare Menge $M [mm] \subset \IR$ [/mm] angeben!). Per Definitionem gilt ja hier (weil [mm] $\,f\,$ [/mm] auf [mm] $\IR$ [/mm] definiert ist)
[mm] $$f^{-1}(\{1\})=\{x \in \IR:\;f(x)=1\}\,.$$ [/mm]

Und damit gilt [mm] $$f^{-1}(\{1\})=M\,.$$ [/mm]

Denn:
Ist $x [mm] \in [/mm] M [mm] \subset \IR\,,$ [/mm] so folgt per Definitionem von [mm] $\,f\,$ [/mm] dann [mm] $f(x)\,=\,1$ [/mm] und damit $x [mm] \in f^{-1}(\{1\})\,.$ [/mm]
Also gilt $M [mm] \subset f^{-1}(\{1\})\,.$ [/mm]

Ist andererseits $x [mm] \in f^{-1}(\{1\}),\,$ [/mm] so gilt $x [mm] \in \IR$ [/mm] mit [mm] $f(x)=1\,.$ [/mm] Nun gilt entweder $x [mm] \in [/mm] M$ oder $x [mm] \notin M\,.$ [/mm] Wäre $x [mm] \notin M\,,$ [/mm] so folgte aber [mm] $f(x)=-1\,.$ [/mm] Das kann also nicht sein. Also muss $x [mm] \in [/mm] M$ gelten.
Also gilt auch [mm] $f^{-1}(\{1\}) \subset M\,.$ [/mm]

Gruß,
Marcel

Bezug
                                
Bezug
nicht messbar?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:29 Di 18.11.2008
Autor: electraZ

Ihr habt mir echt super geholfen!!!

Vielel vielen Dank!!!!!

schönen tag noch :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de