www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - nicht stetig in 0 (Richtungsab
nicht stetig in 0 (Richtungsab < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nicht stetig in 0 (Richtungsab: leitungen existieren?)
Status: (Frage) beantwortet Status 
Datum: 20:20 Do 21.06.2007
Autor: CPH

Aufgabe
Zeige, dass die Funktion f : [mm] R^2 \to [/mm] R mit f(0, 0) = 0 und
f(x, y) [mm] =\bruch{xy^2}{x^2 + y^4} [/mm]
für (x, y) [mm] \not= [/mm] (0, 0)
im Nullpunkt unstetig ist, aber dort Ableitungen in jeder Richtung hat. Skizziere den Graphen
von f in [mm] R^3 [/mm] mit einem Plotprogramm.

Hallo,
Das mit der unstetigkeit müsste ich irgendwie hinhriegen

Ich nehme einfach an, es ist stetig, betrachte einen Grenzwert gegen 0 und stelle dann fest, dass es unstetig ist.

Aber wie soll man zeigen,  dass " dort Ableitungen in jeder Richtung " existieren.

im eindimensionalen Fall würd ich doch sagen "nicht stetig => nicht diffbar".


Mfg

CPH

        
Bezug
nicht stetig in 0 (Richtungsab: Antwort
Status: (Antwort) fertig Status 
Datum: 06:29 Fr 22.06.2007
Autor: Somebody


> Zeige, dass die Funktion f : [mm]R^2 \to[/mm] R mit f(0, 0) = 0 und
>  f(x, y) [mm]=\bruch{xy^2}{x^2 + y^4}[/mm]
>  für (x, y) [mm]\not=[/mm] (0, 0)
>  im Nullpunkt unstetig ist, aber dort Ableitungen in jeder
> Richtung hat. Skizziere den Graphen
>  von f in [mm]R^3[/mm] mit einem Plotprogramm.
>  Hallo,
>  Das mit der unstetigkeit müsste ich irgendwie hinhriegen
>  
> Ich nehme einfach an, es ist stetig, betrachte einen
> Grenzwert gegen 0 und stelle dann fest, dass es unstetig
> ist.

Z.B. ist [mm]\lim_{n\rightarrow\infty}f\big(\frac{1}{n^2},\frac{1}{n}\big) = \frac{1}{2}\neq 0[/mm].

> Aber wie soll man zeigen,  dass " dort Ableitungen in jeder
> Richtung " existieren.

Betrachte [mm]x=r\cos(\varphi), y=r\cos(\varphi)[/mm] und lasse, bei festem [mm]\varphi[/mm], d.h. bei festgehaltener Richtung, [mm]r\rightarrow 0[/mm] gehen.
  

> im eindimensionalen Fall würd ich doch sagen "nicht stetig
> => nicht diffbar".

Das stimmt hier auch: behauptet wird ja nur, dass die Richtungsableitungen existieren. Wenn man die Funktion auf eine bestimmte Richtung einschränkt, dann ist sie ebenfalls stetig. Betrachtet man
[mm]f(r\cos(\varphi),r\sin(\varphi))=\frac{r^3\cos(\varphi)\sin^2(\varphi)}{r^2\cos^2(\varphi)+r^4\sin^4\varphi)}[/mm]

gibt es zwei Möglichkeiten: entweder ist [mm]\cos(\varphi)= 0[/mm], dann ist [mm]f(r\cos(\varphi),r\sin(\varphi)) = 0[/mm], für alle [mm]r[/mm], oder es ist [mm]\cos(\varphi)\neq 0[/mm], dann haben wir
[mm]\lim_{r\rightarrow 0}\frac{r^3\cos(\varphi)\sin^2(\varphi)}{r^2\cos^2(\varphi)+r^2\sin^2(\varphi)} = \lim_{r\rightarrow 0}\frac{r\cos(\varphi)\sin^2(\varphi)}{\cos^2(\varphi)+r^2\sin^4(\varphi)} = 0[/mm]

Die Folge [mm](x_n,y_n) := \big(\frac{1}{n^2},\frac{1}{n}\big)[/mm], mit der die Stetigkeit im Ursprung wiederlegt werden kann, kommt eben nicht aus konstanter Richtung gegen [mm](0,0)[/mm].

Bezug
                
Bezug
nicht stetig in 0 (Richtungsab: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 Di 03.07.2007
Autor: CPH

Hallo, vielen Dank, wenn auch recht spät, bin erst jetzt dazu gekommen mich wieder mit der Aufgabe zu beschäftigen.

MfG
CPH

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de