www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - (nichtleere) endliche Mengen
(nichtleere) endliche Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(nichtleere) endliche Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 12.06.2007
Autor: annklo

Aufgabe
1. Seien A,B,C endliche Mengen. Zeigen Sie: [mm] |(A^{B})^{C}|=|A^{B \times C}| [/mm]

2. Seien A,B nichtleere endliche Mengen.
    Zeigen Sie: (A [mm] \times [/mm] B) \ (B [mm] \times [/mm] A) [mm] \sim [/mm] (B [mm] \times [/mm] A) \ (A [mm] \times [/mm] B).

Hallo Matheraum,
Diese Aufgabe macht mir Probleme, weil ich [mm] \times [/mm] im Zusammenhang mit Mengen noch nie kennengelernt habe?Die Aufgabe entspricht zwar den "normalen" Potnezgesetzen, aber kann man den Beweis einfach darauf ableiten?
Und auch die Gleichmächitgkeit macht mir noch große Probleme.
Danke schonmal für bemühte Hilfe


        
Bezug
(nichtleere) endliche Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Di 12.06.2007
Autor: dormant

Hi!

Erstmal ein Paar Definitionen zur Klarheit. |A| ist die Anzahl der Elemente der Menge A, falls A endlich ist (was hier der Fall ist). Die Mächtigkeit von einer endlichen Menge A ist einfach die Anzahl ihrer Elemente, also |A|. Damit sieht 2. etwas freundlicher aus, nämlich:

2. zeige [mm] |(A\times B)\setminus(B\times A)|=|(B\times A)\setminus(A\times [/mm] B)|.

Die Aufgabe ist nichts Weiteres als eine Übung in Kombinatorik. [mm] A^{B} [/mm] sind alle Paare (a,b) mit [mm] a\in [/mm] A und [mm] b\in [/mm] B. [mm] (A^{B})^{C} [/mm] sind alle Tripel ((a,b),c). Du musst nur abzählen wie viele das sind.

Bei 2. muss man aufpassen, ob A und B gemeinsame Elemente haben. Wenn nicht ist 2. äquivalent zu: zeige |AxB|=|BxA| und hoffentlich ist klar warum das stimmt. Wenn sie doch gemeinsame Elemente haben werden sie durch die \ sowohl links als auch rechts rausgeschmissen. Oder wenn a in A und B, und b in B und A liegen, dann ist (a,b) in AxB und (a,b) ist in BxA und (b,a) ist in BxA und (b,a) ist in AxB. Somit werden aus AxB genausoviele Elemente wie aus BxA durch die \ rausgenommen. Und da |AxB|=|BxA| ist auch 2. wahr.

Das ist einfach ein Herumgedreh.

Gruß,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de