www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - nichtlineare Gleichngssysteme
nichtlineare Gleichngssysteme < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nichtlineare Gleichngssysteme: Startwert?
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:05 Mo 03.10.2005
Autor: Beule-M

Hallo,

ich möchte ein nichtlineares Gleichungssystem mit zwei Unbekannten und zwei Gleichungen mit dem Newton-Verfahren lösen. Dazu benötige ich aber einen Startwert, welcher in der Nähe der Nullstelle liegt.
f1(x1,x2)= [mm] e^{x1}+x1+ x2^{2}-,5=0 [/mm]
f2(x1,x2)=x1+cos(x2)-0,2=0
In den Lösungen ist zu erkennen, dass man den Startwert aus den Schnittpunkten im Höhenliniendiagramm ablesen kann. Aber wie kommt man zum Höhenliniendiagramm?
Man könnte versuchen die Gleichungen nach einer Variablen aufzulösen, aber das ist doch nicht immer möglich.
Habt Ihr einen Tipp für mich?
Danke


        
Bezug
nichtlineare Gleichngssysteme: Höhenliniendiagramm
Status: (Antwort) fertig Status 
Datum: 21:24 Mo 03.10.2005
Autor: MathePower

Hallo Beule-M,

> ich möchte ein nichtlineares Gleichungssystem mit zwei
> Unbekannten und zwei Gleichungen mit dem Newton-Verfahren
> lösen. Dazu benötige ich aber einen Startwert, welcher in
> der Nähe der Nullstelle liegt.
>  f1(x1,x2)= [mm]e^{x1}+x1+ x2^{2}-,5=0[/mm]
>  
> f2(x1,x2)=x1+cos(x2)-0,2=0
>  In den Lösungen ist zu erkennen, dass man den Startwert
> aus den Schnittpunkten im Höhenliniendiagramm ablesen kann.
> Aber wie kommt man zum Höhenliniendiagramm?

Höhenliniendiagramm sind Linien gleicher Höhe (z-Werte).

>  Man könnte versuchen die Gleichungen nach einer Variablen
> aufzulösen, aber das ist doch nicht immer möglich.

Gruß
MathePower

Bezug
                
Bezug
nichtlineare Gleichngssysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Mo 03.10.2005
Autor: Beule-M

Ja danke,
das ist schon klar, aber wenn ich die Gleichungen nicht nach einer Variablen auflösen kann, wie komme ich dann zum Startwert oder zum Höhenliniendiagramm?

Bezug
                        
Bezug
nichtlineare Gleichngssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Di 04.10.2005
Autor: mathemaduenn

Hallo Beule-M,
> Ja danke,
>  das ist schon klar, aber wenn ich die Gleichungen nicht
> nach einer Variablen auflösen kann, wie komme ich dann zum
> Startwert oder zum Höhenliniendiagramm?

1. einschließen im Bsp. [mm] x_1 [/mm] aus [-0.8,1.2] weil cos kleiner 1 dann [mm] x_2 [/mm] usw.
2. Raten
3. global konvergente Verfahren verwenden.
viele Grüße
matheaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de