www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - nirgends diffbare Funktion
nirgends diffbare Funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nirgends diffbare Funktion: Beweisfrage
Status: (Frage) überfällig Status 
Datum: 11:57 Mo 25.04.2011
Autor: Talianna

Aufgabe
Es gilt: Die Funktion f:= [mm] \sum_{n=1}^{\infty}f_n [/mm] ist auf ganz [mm] \IR [/mm] stetig, aber nirgends differenzierbar.

Beweis: Die Reihe konvergiert wegen [mm] \parallel f_n \parallel [/mm] = [mm] \bruch{1}{2}4^{-n} [/mm] normal auf [mm] \IR [/mm] und stellt eine stetige Funktion dar. Wir zeigen, dass f in x [mm] \in \IR [/mm] nicht differenzierbar ist. Dazu wählen wir zu jedem n [mm] h_n [/mm] := [mm] +\bruch{1}{4}f^{-n} [/mm] oder [mm] h_n [/mm] := [mm] -\bruch{1}{4}f^{-n} [/mm] so, dass [mm] f_n [/mm] zwischen den Stellen x und [mm] x+h_n [/mm] linear ist. Dann ist auch [mm] f_k [/mm] mit [mm] k\le [/mm] n zwischen x und [mm] x+h_n [/mm] linear. für [mm] k\le [/mm] n ist also
[mm] \bruch{f_k(x+h_n)-f_k(x)}{h_n} [/mm] = [mm] \pm1 [/mm]
Für k>n ist [mm] h_n [/mm] eine Periode der [mm] f_k; [/mm] es gilt also
[mm] \bruch{f_k(x+h_n)-f_k(x)}{h_n} [/mm] = 0
Die Differenzenquotienten von f zu den [mm] h_n [/mm] sind daher
[mm] \bruch{f(x+h_n)-f(x)}{h_n} [/mm] = [mm] \sum_{k=0}^n\bruch{f_k(x+h_n)-f_k(x)}{h_n} [/mm] = [mm] \sum_{k=1}^n \pm1 [/mm]

Hallo und frohe Ostern erstmal.

Ich habe eine Frage zu dem Beweis dort oben. Ich habe ihn genau so im Königsberger gefunden. (An der Korrektheit zweifel ich also nicht). Der erste Teil mit der Stetigkeit ist klar. Im zweiten Teil hängt es jedoch an 1-2 Stellen.

1. die Stelle, wo [mm] h_n [/mm] gewählt wird: Das wird doch so gewählt, damit man sicher auf einer der linearen Stücke bleibt und nicht über den nicht-diffbaren Punkt an der Spitze hinaus kommt, oder? D.h. wenn ich dicht bei 0 bin, wähle ich +1/4... und wenn ich dicht an der Spitze bin -1/4... richtig?

2. der erste Differenzenquotient ist klar, warum das [mm] \pm [/mm] 1 ist, es handelt sich ja um die Winkelhalbierende.... aber beim zweiten Differenzenquotienten versteh ich nicht, warum da 0 rauskommt. Was genau bedeutet hier "ist [mm] h_n [/mm] eine Periode der [mm] f_k"? [/mm] Periodizität ist für mich, dass sich etwas immer so wiederholt. Wenn es sich doch aber wiederholt, warum ist da dann der Diff-quotient = 0?

Ich hoffe, dass ihr mir in den beiden Punkten helfen könnt!
Schöne Feiertagsgrüße
Talianna

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
nirgends diffbare Funktion: Summanden ?
Status: (Antwort) fertig Status 
Datum: 12:23 Mo 25.04.2011
Autor: Al-Chwarizmi


> Es gilt: Die Funktion f:= [mm]\sum_{n=1}^{\infty}f_n[/mm] ist auf
> ganz [mm]\IR[/mm] stetig, aber nirgends differenzierbar.

So etwas wird man nur beweisen können, wenn man weiß,
wie die Summanden [mm] f_n [/mm] definiert sind !
Du müsstest also unbedingt die Definition von [mm] f_n [/mm] mit
liefern.

LG   Al-Chw.

> Beweis: Die Reihe konvergiert wegen [mm]\parallel f_n \parallel[/mm]
> = [mm]\bruch{1}{2}4^{-n}[/mm] normal auf [mm]\IR[/mm] und stellt eine stetige
> Funktion dar. Wir zeigen, dass f in x [mm]\in \IR[/mm] nicht
> differenzierbar ist. Dazu wählen wir zu jedem n [mm]h_n[/mm] :=
> [mm]+\bruch{1}{4}f^{-n}[/mm] oder [mm]h_n[/mm] := [mm]-\bruch{1}{4}f^{-n}[/mm] so,
> dass [mm]f_n[/mm] zwischen den Stellen x und [mm]x+h_n[/mm] linear ist. Dann
> ist auch [mm]f_k[/mm] mit [mm]k\le[/mm] n zwischen x und [mm]x+h_n[/mm] linear. für
> [mm]k\le[/mm] n ist also
>  [mm]\bruch{f_k(x+h_n)-f_k(x)}{h_n}[/mm] = [mm]\pm1[/mm]
>  Für k>n ist [mm]h_n[/mm] eine Periode der [mm]f_k;[/mm] es gilt also
>  [mm]\bruch{f_k(x+h_n)-f_k(x)}{h_n}[/mm] = 0
>  Die Differenzenquotienten von f zu den [mm]h_n[/mm] sind daher
>  [mm]\bruch{f(x+h_n)-f(x)}{h_n}[/mm] =
> [mm]\sum_{k=0}^n\bruch{f_k(x+h_n)-f_k(x)}{h_n}[/mm] = [mm]\sum_{k=1}^n \pm1[/mm]
>  
> Hallo und frohe Ostern erstmal.
>  
> Ich habe eine Frage zu dem Beweis dort oben. Ich habe ihn
> genau so im Königsberger gefunden. (An der Korrektheit
> zweifel ich also nicht). Der erste Teil mit der Stetigkeit
> ist klar. Im zweiten Teil hängt es jedoch an 1-2 Stellen.
>
> 1. die Stelle, wo [mm]h_n[/mm] gewählt wird: Das wird doch so
> gewählt, damit man sicher auf einer der linearen Stücke
> bleibt und nicht über den nicht-diffbaren Punkt an der
> Spitze hinaus kommt, oder? D.h. wenn ich dicht bei 0 bin,
> wähle ich +1/4... und wenn ich dicht an der Spitze bin
> -1/4... richtig?
>  
> 2. der erste Differenzenquotient ist klar, warum das [mm]\pm[/mm] 1
> ist, es handelt sich ja um die Winkelhalbierende.... aber
> beim zweiten Differenzenquotienten versteh ich nicht, warum
> da 0 rauskommt. Was genau bedeutet hier "ist [mm]h_n[/mm] eine
> Periode der [mm]f_k"?[/mm] Periodizität ist für mich, dass sich
> etwas immer so wiederholt. Wenn es sich doch aber
> wiederholt, warum ist da dann der Diff-quotient = 0?
>  
> Ich hoffe, dass ihr mir in den beiden Punkten helfen
> könnt!
>  Schöne Feiertagsgrüße
>  Talianna
>  
> Ich habe diese Frage in keinem anderen Forum gestellt.


Bezug
        
Bezug
nirgends diffbare Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Mo 25.04.2011
Autor: rainerS

Hallo Talianna!


> 2. der erste Differenzenquotient ist klar, warum das [mm]\pm[/mm] 1
> ist, es handelt sich ja um die Winkelhalbierende.... aber
> beim zweiten Differenzenquotienten versteh ich nicht, warum
> da 0 rauskommt. Was genau bedeutet hier "ist [mm]h_n[/mm] eine
> Periode der [mm]f_k"?[/mm] Periodizität ist für mich, dass sich
> etwas immer so wiederholt.

Wenn [mm] $f_k$ [/mm] eine periodische Funktion ist, dann heisst das, dass es eine Zahl $p$ gibt mit $f(x+p)=f(x)$. p nennt man eine Periode von [mm] $f_k$. [/mm]

> Wenn es sich doch aber
> wiederholt, warum ist da dann der Diff-quotient = 0?

Na, per Definition ist dann [mm] $f_k(x+h_n) =f_k(x)$. [/mm]

Viele Grüße
   Rainer

Bezug
        
Bezug
nirgends diffbare Funktion: Ergänzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:33 Mo 25.04.2011
Autor: Talianna

Das habe ich ganz vergessen.
Es handelt sich um die Takagi-Funktion. Die einzelnen [mm] f_n [/mm] sind also Sägefunktionen, die dann zu f aufsummiert werden. Die Periode von [mm] f_n [/mm] ist [mm] 4^{-n} [/mm] .

Bezug
                
Bezug
nirgends diffbare Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:11 Mo 25.04.2011
Autor: Al-Chwarizmi


> Das habe ich ganz vergessen.
>  Es handelt sich um die Takagi-Funktion. Die einzelnen [mm]f_n[/mm]
> sind also Sägefunktionen, die dann zu f aufsummiert
> werden. Die Periode von [mm]f_n[/mm] ist [mm]4^{-n}[/mm] .


Damit ist [mm] f_n [/mm] immer noch nicht definiert. Wir wüssten
jetzt zwar, wo wir allenfalls im Internet nach einer
exakten Definition suchen könnten ...


Bezug
                        
Bezug
nirgends diffbare Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Mo 25.04.2011
Autor: Talianna

Genauer ist es im Königsberger auch nicht angegeben. Sägefunktion, Perdiode [mm] 4^{-n} [/mm] und die bilden quasi die Winkelhalbierende (höchster Punkt auf der y-Achse ist [mm] \bruch{1}{2} \* 4^{-n} [/mm] , das lässt sich aus der Zeichnung ablesen).

Aber ich glaube die Antwort von rainerS hat mir schon sehr weitergeholfen, danke!

Bezug
        
Bezug
nirgends diffbare Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:23 Di 03.05.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de