www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - nte Wurzel mit h-Methode
nte Wurzel mit h-Methode < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nte Wurzel mit h-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:32 Mi 02.12.2009
Autor: DrNetwork

Aufgabe
k [mm] \in \IN f:(0,\infty) \Rightarrow \IR f(x)=\wurzel[k]{x} [/mm] mittels Definition ableiten.

Hi,

nach langem Überlegen sehe ich hier einfach keine Möglichkeiten das zu vereinfachen:

[mm] \frac{(x-h)^\frac{1}{k} - x^\frac{1}{k}}{h} [/mm]

bitte nur einen kleinen Tipp den Rest möchte ich möglichst selber machen. :)

        
Bezug
nte Wurzel mit h-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 07:27 Mi 02.12.2009
Autor: Gonozal_IX

Hiho,

schau mal meine Antwort hier.

Aber kurz eine Anmerkung. Sowohl du, als auch dein Komolitone im anderen Thread haben beide als Definition

$ [mm] \limes_{h\rightarrow0} \bruch{f(x_{0} - h) - f(x_{0})}{h} [/mm] $

benutzt, was aber falsch ist, es muss heissen:

$ [mm] \limes_{h\rightarrow0} \bruch{f(x_{0} + h) - f(x_{0})}{h} [/mm] $

Kann es sein, dass euer Dozent da einen Fehler gemacht hat?
Wenn ja, weist ihn doch mal drauf hin.

MFG,
Gono.

Bezug
        
Bezug
nte Wurzel mit h-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 08:02 Mi 02.12.2009
Autor: fred97

Gonzal hats schon gesagt:

zu betrachten ist:  [mm] \limes_{h\rightarrow 0}\bruch{\wurzel[k]{x_0+h}-\wurzel[k]{x_0}}{h} [/mm]

Tipp: Es ist

             [mm] $(a^k-b^k)= (a-b)(a^{k-1}+a^{k-2}b+ ...+ab^{k-2}+b^{k-1})$ [/mm]

Setze nun $a= [mm] \wurzel[k]{x_0+h}$ [/mm] und $b= [mm] \wurzel[k]{x_0}$ [/mm]

FRED

Bezug
                
Bezug
nte Wurzel mit h-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Mi 02.12.2009
Autor: DrNetwork


> [mm](a^k-b^k)= (a-b)(a^{k-1}+a^{k-2}b+ ...+ab^{k-2}+b^{k-1})[/mm]

müsste das nicht:

[mm] (a^{k}+a^{k-1}b+a^{k-1}b^{2}+ [/mm] ...

heißen?

Bezug
                        
Bezug
nte Wurzel mit h-Methode: nein
Status: (Antwort) fertig Status 
Datum: 15:25 Mi 02.12.2009
Autor: Loddar

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo DrNetwork!


Nein! Wenn Du Deinen "Vorschlag" mal ausmultiplizierst würde da z.B. die Potenz $a^{k \ \red+1}}$ entstehen.


Gruß
Loddar


Bezug
                
Bezug
nte Wurzel mit h-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mi 02.12.2009
Autor: DrNetwork


> [mm](a^k-b^k)= (a-b)(a^{k-1}+a^{k-2}b+ ...+ab^{k-2}+b^{k-1})[/mm]

Auf so eine Idee bin auch gekommen, aber nicht auf so eine Formel. Wie kommt man denn darauf?

Hab schon probiert das als Summe aufzuschreiben, aber weiss nicht genau wie ich das erste Glied hinbekomme ohne b und [mm] a^{k-1}[/mm]

Bezug
                        
Bezug
nte Wurzel mit h-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Mi 02.12.2009
Autor: Gonozal_IX

Hiho,

> > [mm](a^k-b^k)= (a-b)(a^{k-1}+a^{k-2}b+ ...+ab^{k-2}+b^{k-1})[/mm]
>  
> Auf so eine Idee bin auch gekommen, aber nicht auf so eine
> Formel. Wie kommt man denn darauf?

Eigentlich recht simpel:

Man betrachtet $f(a) = [mm] (a^k [/mm] - [mm] b^k)$ [/mm] als Polynom in a und erkennt b als Nullstelle des Polynom, also kann man $(a-b)$ per Polynomdivision ausklammern und erhält eben:

[mm] $\bruch{a^k - b^k}{a-b} [/mm] = [mm] (a^{k-1}+a^{k-2}b+ ...+ab^{k-2}+b^{k-1})$ [/mm]

Multiplizieren mit $(a-b)$ liefert die gewünschte Formel.

Und ja, schreibe [mm] a^{k-1} [/mm] als [mm] $a^{k-1}*b^0 [/mm] $ und schon findest du bestimmt ganz leicht eine Summenschreibweise dafür ;-)

MFG,
Gono

Bezug
        
Bezug
nte Wurzel mit h-Methode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Mi 02.12.2009
Autor: DrNetwork

Schönen Gruß an MrAfi, scheint ja so als wenn wir die gleichen Übungen machen müssten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de